
In the adjoining figure, $ABCD$ is a parallelogram. $P$ is a point on $BC$ such that $BP:PC=1:2$. $DP$ produced meets $AB$ produced at $Q$. Given $ar\left( \Delta CPQ \right)=20c{{m}^{2}}$.
Calculate: (i) $ar\left( \Delta CDP \right)$ (ii) $ar\left( ABCD \right)$

Answer
510.6k+ views
Hint: We start solving this problem by first considering the triangles $BPQ$ and $CPD$ . Then we start proving that those two triangles are similar using the angle-angle similarity. Then we find the area of the $\Delta CDP$ by using the formula $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$ . Then we consider the triangles $BAP$ and $AQD$ as $BP$ is parallel to $AD$ . We again prove that these two triangles are similar using angle-angle similarity. Then we find the area of the triangle $AQD$ by using the formula $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$ . Then we find the area of the quadrilateral $ADPB$ by subtracting the area of triangle $BPQ$ from the area of triangle $AQD$. Finally, we get the area of the parallelogram $ABCD$ by adding the areas of $\Delta CDP$ and quadrilateral $ADPB$.
Complete step by step answer:
Let us first consider the triangles $BPQ$ and $CPD$.
Now, we get,
$\angle BPQ=\angle CPD$ as they are vertically opposite angles.
$\angle BQP=\angle PDC$ as they are alternate angles.
By angle-angle similarity, we get that $\Delta BPQ$ is similar to $\Delta CPD$
So, we get,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}$
But we were given that $BP:PC=1:2$ , so,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}=\dfrac{1}{2}$
Now, let us consider the formula, $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$
By using the above formula, we get,
$\begin{align}
& \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
\end{align}$
We already know that, $ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times ar\left( \Delta CPQ \right)$
So, we get,
$\begin{align}
& ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times 20c{{m}^{2}} \\
& \Rightarrow ar\left( \Delta BPQ \right)=10c{{m}^{2}} \\
\end{align}$
So,
$\begin{align}
& \dfrac{10}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
& \Rightarrow ar\left( \Delta CPD \right)=40c{{m}^{2}} \\
\end{align}$
Now, let us consider the triangles $BAP$ and $AQD$.
We get,
$\angle QBP=\angle QAD$ , corresponding angles as $BP$ is parallel to $AD$.
$\angle BQP=\angle AQD$ , as they are common angles.
By Angle-Angle similarity, we get, $\Delta BQP$ is similar to $\Delta AQD$
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}$
As, $\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{1}{2}$ , we get, $\dfrac{PQ}{QD}=\dfrac{1}{3}$ ,
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}=3$ .
Let us consider the formula, $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$, we get,
$\begin{align}
& \dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}={{\left( 3 \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}=9 \\
& \Rightarrow ar\left( \Delta AQD \right)=9\times 10 \\
& \Rightarrow ar\left( \Delta AQD \right)=90c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right)$
We get,
$\begin{align}
& ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right) \\
& \Rightarrow ar\left( ADPB \right)=90-10 \\
& \Rightarrow ar\left( ADPB \right)=80c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right)$
We get,
$\begin{align}
& ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right) \\
& \Rightarrow ar\left( ABCD \right)=40+80 \\
& \Rightarrow ar\left( ABCD \right)=120c{{m}^{2}} \\
\end{align}$
Hence, we get (i) $ar\left( \Delta CDP \right)=40c{{m}^{2}}$ and (ii) $ar\left( ABCD \right)=120c{{m}^{2}}$
Note:
The possibilities for making mistakes in this type of problem are, one may make a mistake by considering some other inappropriate triangles to get similarity. One must know which triangles are to be taken to check similarity and then proceed to find the required areas.
Complete step by step answer:
Let us first consider the triangles $BPQ$ and $CPD$.
Now, we get,
$\angle BPQ=\angle CPD$ as they are vertically opposite angles.
$\angle BQP=\angle PDC$ as they are alternate angles.
By angle-angle similarity, we get that $\Delta BPQ$ is similar to $\Delta CPD$
So, we get,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}$
But we were given that $BP:PC=1:2$ , so,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}=\dfrac{1}{2}$
Now, let us consider the formula, $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$
By using the above formula, we get,
$\begin{align}
& \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
\end{align}$
We already know that, $ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times ar\left( \Delta CPQ \right)$
So, we get,
$\begin{align}
& ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times 20c{{m}^{2}} \\
& \Rightarrow ar\left( \Delta BPQ \right)=10c{{m}^{2}} \\
\end{align}$
So,
$\begin{align}
& \dfrac{10}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
& \Rightarrow ar\left( \Delta CPD \right)=40c{{m}^{2}} \\
\end{align}$
Now, let us consider the triangles $BAP$ and $AQD$.
We get,
$\angle QBP=\angle QAD$ , corresponding angles as $BP$ is parallel to $AD$.
$\angle BQP=\angle AQD$ , as they are common angles.
By Angle-Angle similarity, we get, $\Delta BQP$ is similar to $\Delta AQD$
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}$
As, $\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{1}{2}$ , we get, $\dfrac{PQ}{QD}=\dfrac{1}{3}$ ,
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}=3$ .
Let us consider the formula, $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$, we get,
$\begin{align}
& \dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}={{\left( 3 \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}=9 \\
& \Rightarrow ar\left( \Delta AQD \right)=9\times 10 \\
& \Rightarrow ar\left( \Delta AQD \right)=90c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right)$
We get,
$\begin{align}
& ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right) \\
& \Rightarrow ar\left( ADPB \right)=90-10 \\
& \Rightarrow ar\left( ADPB \right)=80c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right)$
We get,
$\begin{align}
& ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right) \\
& \Rightarrow ar\left( ABCD \right)=40+80 \\
& \Rightarrow ar\left( ABCD \right)=120c{{m}^{2}} \\
\end{align}$
Hence, we get (i) $ar\left( \Delta CDP \right)=40c{{m}^{2}}$ and (ii) $ar\left( ABCD \right)=120c{{m}^{2}}$
Note:
The possibilities for making mistakes in this type of problem are, one may make a mistake by considering some other inappropriate triangles to get similarity. One must know which triangles are to be taken to check similarity and then proceed to find the required areas.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Difference between mass and weight class 10 physics CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

A farmer moves along the boundary of a square fiel-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE
