
In the adjoining figure, $ABCD$ is a parallelogram. $P$ is a point on $BC$ such that $BP:PC=1:2$. $DP$ produced meets $AB$ produced at $Q$. Given $ar\left( \Delta CPQ \right)=20c{{m}^{2}}$.
Calculate: (i) $ar\left( \Delta CDP \right)$ (ii) $ar\left( ABCD \right)$
Answer
575.7k+ views
Hint: We start solving this problem by first considering the triangles $BPQ$ and $CPD$ . Then we start proving that those two triangles are similar using the angle-angle similarity. Then we find the area of the $\Delta CDP$ by using the formula $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$ . Then we consider the triangles $BAP$ and $AQD$ as $BP$ is parallel to $AD$ . We again prove that these two triangles are similar using angle-angle similarity. Then we find the area of the triangle $AQD$ by using the formula $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$ . Then we find the area of the quadrilateral $ADPB$ by subtracting the area of triangle $BPQ$ from the area of triangle $AQD$. Finally, we get the area of the parallelogram $ABCD$ by adding the areas of $\Delta CDP$ and quadrilateral $ADPB$.
Complete step by step answer:
Let us first consider the triangles $BPQ$ and $CPD$.
Now, we get,
$\angle BPQ=\angle CPD$ as they are vertically opposite angles.
$\angle BQP=\angle PDC$ as they are alternate angles.
By angle-angle similarity, we get that $\Delta BPQ$ is similar to $\Delta CPD$
So, we get,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}$
But we were given that $BP:PC=1:2$ , so,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}=\dfrac{1}{2}$
Now, let us consider the formula, $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$
By using the above formula, we get,
$\begin{align}
& \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
\end{align}$
We already know that, $ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times ar\left( \Delta CPQ \right)$
So, we get,
$\begin{align}
& ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times 20c{{m}^{2}} \\
& \Rightarrow ar\left( \Delta BPQ \right)=10c{{m}^{2}} \\
\end{align}$
So,
$\begin{align}
& \dfrac{10}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
& \Rightarrow ar\left( \Delta CPD \right)=40c{{m}^{2}} \\
\end{align}$
Now, let us consider the triangles $BAP$ and $AQD$.
We get,
$\angle QBP=\angle QAD$ , corresponding angles as $BP$ is parallel to $AD$.
$\angle BQP=\angle AQD$ , as they are common angles.
By Angle-Angle similarity, we get, $\Delta BQP$ is similar to $\Delta AQD$
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}$
As, $\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{1}{2}$ , we get, $\dfrac{PQ}{QD}=\dfrac{1}{3}$ ,
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}=3$ .
Let us consider the formula, $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$, we get,
$\begin{align}
& \dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}={{\left( 3 \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}=9 \\
& \Rightarrow ar\left( \Delta AQD \right)=9\times 10 \\
& \Rightarrow ar\left( \Delta AQD \right)=90c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right)$
We get,
$\begin{align}
& ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right) \\
& \Rightarrow ar\left( ADPB \right)=90-10 \\
& \Rightarrow ar\left( ADPB \right)=80c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right)$
We get,
$\begin{align}
& ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right) \\
& \Rightarrow ar\left( ABCD \right)=40+80 \\
& \Rightarrow ar\left( ABCD \right)=120c{{m}^{2}} \\
\end{align}$
Hence, we get (i) $ar\left( \Delta CDP \right)=40c{{m}^{2}}$ and (ii) $ar\left( ABCD \right)=120c{{m}^{2}}$
Note:
The possibilities for making mistakes in this type of problem are, one may make a mistake by considering some other inappropriate triangles to get similarity. One must know which triangles are to be taken to check similarity and then proceed to find the required areas.
Complete step by step answer:
Let us first consider the triangles $BPQ$ and $CPD$.
Now, we get,
$\angle BPQ=\angle CPD$ as they are vertically opposite angles.
$\angle BQP=\angle PDC$ as they are alternate angles.
By angle-angle similarity, we get that $\Delta BPQ$ is similar to $\Delta CPD$
So, we get,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}$
But we were given that $BP:PC=1:2$ , so,
$\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{BQ}{CD}=\dfrac{1}{2}$
Now, let us consider the formula, $\dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{BP}{PC} \right)}^{2}}$
By using the above formula, we get,
$\begin{align}
& \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}={{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta BPQ \right)}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
\end{align}$
We already know that, $ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times ar\left( \Delta CPQ \right)$
So, we get,
$\begin{align}
& ar\left( \Delta BPQ \right)=\dfrac{1}{2}\times 20c{{m}^{2}} \\
& \Rightarrow ar\left( \Delta BPQ \right)=10c{{m}^{2}} \\
\end{align}$
So,
$\begin{align}
& \dfrac{10}{ar\left( \Delta CPD \right)}=\dfrac{1}{4} \\
& \Rightarrow ar\left( \Delta CPD \right)=40c{{m}^{2}} \\
\end{align}$
Now, let us consider the triangles $BAP$ and $AQD$.
We get,
$\angle QBP=\angle QAD$ , corresponding angles as $BP$ is parallel to $AD$.
$\angle BQP=\angle AQD$ , as they are common angles.
By Angle-Angle similarity, we get, $\Delta BQP$ is similar to $\Delta AQD$
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}$
As, $\dfrac{BP}{CP}=\dfrac{PQ}{PD}=\dfrac{1}{2}$ , we get, $\dfrac{PQ}{QD}=\dfrac{1}{3}$ ,
So, we get, $\dfrac{AQ}{BQ}=\dfrac{QD}{QP}=\dfrac{AD}{BP}=3$ .
Let us consider the formula, $\dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}}$, we get,
$\begin{align}
& \dfrac{ar\left( \Delta AQD \right)}{ar\left( \Delta BQD \right)}={{\left( \dfrac{AQ}{BQ} \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}={{\left( 3 \right)}^{2}} \\
& \Rightarrow \dfrac{ar\left( \Delta AQD \right)}{10}=9 \\
& \Rightarrow ar\left( \Delta AQD \right)=9\times 10 \\
& \Rightarrow ar\left( \Delta AQD \right)=90c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right)$
We get,
$\begin{align}
& ar\left( ADPB \right)=ar\left( \Delta AQD \right)-ar\left( \Delta BQP \right) \\
& \Rightarrow ar\left( ADPB \right)=90-10 \\
& \Rightarrow ar\left( ADPB \right)=80c{{m}^{2}} \\
\end{align}$
Now, let us consider $ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right)$
We get,
$\begin{align}
& ar\left( ABCD \right)=ar\left( \Delta CDP \right)+ar\left( ADPB \right) \\
& \Rightarrow ar\left( ABCD \right)=40+80 \\
& \Rightarrow ar\left( ABCD \right)=120c{{m}^{2}} \\
\end{align}$
Hence, we get (i) $ar\left( \Delta CDP \right)=40c{{m}^{2}}$ and (ii) $ar\left( ABCD \right)=120c{{m}^{2}}$
Note:
The possibilities for making mistakes in this type of problem are, one may make a mistake by considering some other inappropriate triangles to get similarity. One must know which triangles are to be taken to check similarity and then proceed to find the required areas.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

