
In terms of potential difference V, electric current I, permittivity ${\varepsilon _{\text{o}}}$, permeability ${\mu _{\text{o}}}$ and speed of light c, the dimensionally correct equation(s) is/are:
(This question has multiple correct options)
$
{\text{A}}{\text{. }}{\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2} \\
{\text{B}}{\text{. }}{\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}} \\
{\text{C}}{\text{. I}} = {\varepsilon _{\text{o}}}{\text{cV}} \\
{\text{D}}{\text{. }}{\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}} \\
$
Answer
591.3k+ views
- Hint: In order to find all the dimensionally correct options we check each individual option separately by using the formulae of speed of light c, resistance R in terms of permittivity and permeability and Ohm’s law.
Ohm’s law: V = IR
Formula Used,
${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Ohm’s Law – V = IR
Complete step-by-step solution:
We could check if all the options are dimensionally correct or not by two methods. We could use their formulae to verify or we could write down the units of each quantity and verify.
We use the formulae of speed of light C and resistance R in terms of ${\mu _{\text{o}}}{\text{ and }}{\varepsilon _{\text{o}}}$, to find the answer.
The speed of light C is given as ${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
The resistance can be expressed as ${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
And we know, V = IR, where V, I, R are the voltage, current and resistance respectively.
${\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\dfrac{{\text{V}}}{{\text{I}}}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\text{R}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}\left( {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \right){\text{ - - - - - Since R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Option A is correct.
${\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{R}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \\
$
Option B is not correct.
${\text{I}} = {\varepsilon _{\text{o}}}{\text{cV}}$
$
\Rightarrow \dfrac{{\text{I}}}{{\text{V}}} = {\varepsilon _{\text{o}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} \\
\Rightarrow \dfrac{1}{{\text{R}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
\Rightarrow \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
$
Option C is correct.
${\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} = {\text{R}}{\varepsilon _{\text{o}}} \\
$
Option D is not correct.
Options A and C are the correct options.
Note – In order to answer this type of question the key is to know to express the given equation in terms of one another. We can also solve this question by only verifying the options using the units of given variables in the question.
The dimensions of the terms given are –
$
[{\text{V] = [}}{{\text{M}}^{ - 1}}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 1}}] \\
[{\text{I] = [A]}} \\
{\text{[c] = [}}{{\text{L}}^1}{{\text{T}}^{ - 1}}] \\
[{\varepsilon _{\text{o}}}]{\text{ = [}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 3}}{{\text{T}}^4}{{\text{A}}^2}] \\
[{\mu _{\text{o}}}]{\text{ = [}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 2}}] \\
$
These dimensions can be performed in each option to verify them, we should still get the same answer.
Ohm’s law: V = IR
Formula Used,
${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Ohm’s Law – V = IR
Complete step-by-step solution:
We could check if all the options are dimensionally correct or not by two methods. We could use their formulae to verify or we could write down the units of each quantity and verify.
We use the formulae of speed of light C and resistance R in terms of ${\mu _{\text{o}}}{\text{ and }}{\varepsilon _{\text{o}}}$, to find the answer.
The speed of light C is given as ${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
The resistance can be expressed as ${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
And we know, V = IR, where V, I, R are the voltage, current and resistance respectively.
${\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\dfrac{{\text{V}}}{{\text{I}}}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\text{R}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}\left( {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \right){\text{ - - - - - Since R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Option A is correct.
${\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{R}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \\
$
Option B is not correct.
${\text{I}} = {\varepsilon _{\text{o}}}{\text{cV}}$
$
\Rightarrow \dfrac{{\text{I}}}{{\text{V}}} = {\varepsilon _{\text{o}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} \\
\Rightarrow \dfrac{1}{{\text{R}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
\Rightarrow \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
$
Option C is correct.
${\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} = {\text{R}}{\varepsilon _{\text{o}}} \\
$
Option D is not correct.
Options A and C are the correct options.
Note – In order to answer this type of question the key is to know to express the given equation in terms of one another. We can also solve this question by only verifying the options using the units of given variables in the question.
The dimensions of the terms given are –
$
[{\text{V] = [}}{{\text{M}}^{ - 1}}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 1}}] \\
[{\text{I] = [A]}} \\
{\text{[c] = [}}{{\text{L}}^1}{{\text{T}}^{ - 1}}] \\
[{\varepsilon _{\text{o}}}]{\text{ = [}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 3}}{{\text{T}}^4}{{\text{A}}^2}] \\
[{\mu _{\text{o}}}]{\text{ = [}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 2}}] \\
$
These dimensions can be performed in each option to verify them, we should still get the same answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

