
In terms of potential difference V, electric current I, permittivity ${\varepsilon _{\text{o}}}$, permeability ${\mu _{\text{o}}}$ and speed of light c, the dimensionally correct equation(s) is/are:
(This question has multiple correct options)
$
{\text{A}}{\text{. }}{\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2} \\
{\text{B}}{\text{. }}{\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}} \\
{\text{C}}{\text{. I}} = {\varepsilon _{\text{o}}}{\text{cV}} \\
{\text{D}}{\text{. }}{\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}} \\
$
Answer
603.3k+ views
- Hint: In order to find all the dimensionally correct options we check each individual option separately by using the formulae of speed of light c, resistance R in terms of permittivity and permeability and Ohm’s law.
Ohm’s law: V = IR
Formula Used,
${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Ohm’s Law – V = IR
Complete step-by-step solution:
We could check if all the options are dimensionally correct or not by two methods. We could use their formulae to verify or we could write down the units of each quantity and verify.
We use the formulae of speed of light C and resistance R in terms of ${\mu _{\text{o}}}{\text{ and }}{\varepsilon _{\text{o}}}$, to find the answer.
The speed of light C is given as ${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
The resistance can be expressed as ${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
And we know, V = IR, where V, I, R are the voltage, current and resistance respectively.
${\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\dfrac{{\text{V}}}{{\text{I}}}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\text{R}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}\left( {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \right){\text{ - - - - - Since R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Option A is correct.
${\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{R}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \\
$
Option B is not correct.
${\text{I}} = {\varepsilon _{\text{o}}}{\text{cV}}$
$
\Rightarrow \dfrac{{\text{I}}}{{\text{V}}} = {\varepsilon _{\text{o}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} \\
\Rightarrow \dfrac{1}{{\text{R}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
\Rightarrow \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
$
Option C is correct.
${\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} = {\text{R}}{\varepsilon _{\text{o}}} \\
$
Option D is not correct.
Options A and C are the correct options.
Note – In order to answer this type of question the key is to know to express the given equation in terms of one another. We can also solve this question by only verifying the options using the units of given variables in the question.
The dimensions of the terms given are –
$
[{\text{V] = [}}{{\text{M}}^{ - 1}}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 1}}] \\
[{\text{I] = [A]}} \\
{\text{[c] = [}}{{\text{L}}^1}{{\text{T}}^{ - 1}}] \\
[{\varepsilon _{\text{o}}}]{\text{ = [}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 3}}{{\text{T}}^4}{{\text{A}}^2}] \\
[{\mu _{\text{o}}}]{\text{ = [}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 2}}] \\
$
These dimensions can be performed in each option to verify them, we should still get the same answer.
Ohm’s law: V = IR
Formula Used,
${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Ohm’s Law – V = IR
Complete step-by-step solution:
We could check if all the options are dimensionally correct or not by two methods. We could use their formulae to verify or we could write down the units of each quantity and verify.
We use the formulae of speed of light C and resistance R in terms of ${\mu _{\text{o}}}{\text{ and }}{\varepsilon _{\text{o}}}$, to find the answer.
The speed of light C is given as ${\text{C = }}\dfrac{1}{{\sqrt {{\mu _{\text{o}}}{\varepsilon _o}} }}$
The resistance can be expressed as ${\text{R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
And we know, V = IR, where V, I, R are the voltage, current and resistance respectively.
${\mu _{\text{o}}}{{\text{I}}^2} = {\varepsilon _{\text{o}}}{{\text{V}}^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\dfrac{{\text{V}}}{{\text{I}}}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}{\left( {\text{R}} \right)^2}$
$ \Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{ }}\left( {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \right){\text{ - - - - - Since R = }}\sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} $
Option A is correct.
${\mu _{\text{o}}}{\text{I}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = {\text{R}} \\
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}} = \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} \\
$
Option B is not correct.
${\text{I}} = {\varepsilon _{\text{o}}}{\text{cV}}$
$
\Rightarrow \dfrac{{\text{I}}}{{\text{V}}} = {\varepsilon _{\text{o}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} \\
\Rightarrow \dfrac{1}{{\text{R}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
\Rightarrow \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} = \sqrt {\dfrac{{{\varepsilon _{\text{o}}}}}{{{\mu _{\text{o}}}}}} \\
$
Option C is correct.
${\mu _{\text{o}}}{\text{cI}} = {\varepsilon _{\text{o}}}{\text{V}}$
$
\Rightarrow \dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}\dfrac{1}{{\sqrt {{\varepsilon _{\text{o}}}{\mu _{\text{o}}}} }} = \dfrac{{\text{V}}}{{\text{I}}} \\
\Rightarrow \sqrt {\dfrac{{{\mu _{\text{o}}}}}{{{\varepsilon _{\text{o}}}}}} = {\text{R}}{\varepsilon _{\text{o}}} \\
$
Option D is not correct.
Options A and C are the correct options.
Note – In order to answer this type of question the key is to know to express the given equation in terms of one another. We can also solve this question by only verifying the options using the units of given variables in the question.
The dimensions of the terms given are –
$
[{\text{V] = [}}{{\text{M}}^{ - 1}}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 1}}] \\
[{\text{I] = [A]}} \\
{\text{[c] = [}}{{\text{L}}^1}{{\text{T}}^{ - 1}}] \\
[{\varepsilon _{\text{o}}}]{\text{ = [}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 3}}{{\text{T}}^4}{{\text{A}}^2}] \\
[{\mu _{\text{o}}}]{\text{ = [}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 2}}] \\
$
These dimensions can be performed in each option to verify them, we should still get the same answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

