
In quadrilateral \[ABCD\], if
\[\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = 2\] then find the value of \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right)\] is
A.\[\dfrac{1}{4}\]
B.\[\dfrac{1}{2}\]
C.\[\dfrac{1}{8}\]
D.1
Answer
568.8k+ views
Hint: Here need to find the value of the given trigonometric expression. For that, we will use the sum to product identities of trigonometry. From there, we will get the values of all angles of the quadrilateral. Then we will put the values of all angles in the given trigonometric expression to get the value.
Formula used:
We will use the formula of the product to sum identities of trigonometry is given by \[\sin a \cdot \cos b = \dfrac{{\sin \left( {a + b} \right) + \sin \left( {a - b} \right)}}{2}\] .
Complete step-by-step answer:
Here it is given that \[ABCD\] is a quadrilateral and it is also given that
\[\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = 2\].
We will first simplify this trigonometric equation to get the value of all angels.
Using the identity \[\sin a \cdot \cos b = \dfrac{{\sin \left( {a + b} \right) + \sin \left( {a - b} \right)}}{2}\] in above equation, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}} \right) + \sin \left( {\dfrac{{A + B}}{2} - \dfrac{{A - B}}{2}} \right)}}{2} + \dfrac{{\sin \left( {\dfrac{{C + D}}{2} + \dfrac{{C - D}}{2}} \right) + \sin \left( {\dfrac{{C + D}}{2} - \dfrac{{C - D}}{2}} \right)}}{2} = 2\]
On adding and subtracting the terms inside the bracket, we get
\[ \Rightarrow \dfrac{{\sin A + \sin B}}{2} + \dfrac{{\sin C + \sin D}}{2} = 2\]
On further simplification, we get
\[ \Rightarrow \dfrac{{\sin A + \sin B + \sin C + \sin D}}{2} = 2\]
On multiplying 2 on both sides, we get
\[ \Rightarrow 2 \times \dfrac{{\sin A + \sin B + \sin C + \sin D}}{2} = 2 \times 2\]
On multiplying the terms, we get
\[ \Rightarrow \sin A + \sin B + \sin C + \sin D = 4\] …….. \[\left( 1 \right)\]
We know the maximum value of \[\sin \theta \] is 1 or \[\sin \theta \le 1\]
Thus, the sum of three sine functions is equal to 4 only when each of them is equal to 1. So,
\[ \Rightarrow \sin A = \sin B = \sin C = \sin D = 1\]
We know that \[\sin \dfrac{\pi }{2} = 1\].
Therefore,
\[ \Rightarrow A = B = C = D = \dfrac{\pi }{2}\]
Now, we will find the value of \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right)\] …….. \[\left( 2 \right)\]
Now, we will substitute the value of all angles obtained in equation 2 here.
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right)\]
On simplifying the terms, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right)\]
Substituting \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] in the above equation, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}\]
On multiplying the terms, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \dfrac{1}{4}\]
Hence, the correct option is option A.
Note: We need to know the meaning of the trigonometric identities as we have used the trigonometric identities in this question. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are true for every value of the occurring variables for which both sides of the equality are defined. We need to keep in mind that all the trigonometric identities are periodic in nature because they repeat their values after a certain interval.
Formula used:
We will use the formula of the product to sum identities of trigonometry is given by \[\sin a \cdot \cos b = \dfrac{{\sin \left( {a + b} \right) + \sin \left( {a - b} \right)}}{2}\] .
Complete step-by-step answer:
Here it is given that \[ABCD\] is a quadrilateral and it is also given that
\[\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + \sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) = 2\].
We will first simplify this trigonometric equation to get the value of all angels.
Using the identity \[\sin a \cdot \cos b = \dfrac{{\sin \left( {a + b} \right) + \sin \left( {a - b} \right)}}{2}\] in above equation, we get
\[ \Rightarrow \dfrac{{\sin \left( {\dfrac{{A + B}}{2} + \dfrac{{A - B}}{2}} \right) + \sin \left( {\dfrac{{A + B}}{2} - \dfrac{{A - B}}{2}} \right)}}{2} + \dfrac{{\sin \left( {\dfrac{{C + D}}{2} + \dfrac{{C - D}}{2}} \right) + \sin \left( {\dfrac{{C + D}}{2} - \dfrac{{C - D}}{2}} \right)}}{2} = 2\]
On adding and subtracting the terms inside the bracket, we get
\[ \Rightarrow \dfrac{{\sin A + \sin B}}{2} + \dfrac{{\sin C + \sin D}}{2} = 2\]
On further simplification, we get
\[ \Rightarrow \dfrac{{\sin A + \sin B + \sin C + \sin D}}{2} = 2\]
On multiplying 2 on both sides, we get
\[ \Rightarrow 2 \times \dfrac{{\sin A + \sin B + \sin C + \sin D}}{2} = 2 \times 2\]
On multiplying the terms, we get
\[ \Rightarrow \sin A + \sin B + \sin C + \sin D = 4\] …….. \[\left( 1 \right)\]
We know the maximum value of \[\sin \theta \] is 1 or \[\sin \theta \le 1\]
Thus, the sum of three sine functions is equal to 4 only when each of them is equal to 1. So,
\[ \Rightarrow \sin A = \sin B = \sin C = \sin D = 1\]
We know that \[\sin \dfrac{\pi }{2} = 1\].
Therefore,
\[ \Rightarrow A = B = C = D = \dfrac{\pi }{2}\]
Now, we will find the value of \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right)\] …….. \[\left( 2 \right)\]
Now, we will substitute the value of all angles obtained in equation 2 here.
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) \times \sin \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right)\]
On simplifying the terms, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right) \times \sin \left( {\dfrac{\pi }{4}} \right)\]
Substituting \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] in the above equation, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}\]
On multiplying the terms, we get
$\Rightarrow$ \[\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)\sin \left( {\dfrac{D}{2}} \right) = \dfrac{1}{4}\]
Hence, the correct option is option A.
Note: We need to know the meaning of the trigonometric identities as we have used the trigonometric identities in this question. Trigonometric identities are defined as the equalities which involve the trigonometric functions. They are true for every value of the occurring variables for which both sides of the equality are defined. We need to keep in mind that all the trigonometric identities are periodic in nature because they repeat their values after a certain interval.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

