
In molecular orbital diagram for $\text{O}_{\text{2}}^{\text{+}}$ ion, the highest occupied orbital is:
(A) $\sigma \,\text{MO}\,\text{orbital}$
(B) $\text{ }\!\!\pi\!\!\text{ }\,\text{MO}\,\text{orbital}$
(C) ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\,\text{MO}\,\text{orbital}$
(D) ${{\sigma }^{*}}\,\text{MO}\,\text{orbital}$
Answer
569.1k+ views
Hint: Molecular orbital theory was put forward by Hund and Mulliken, which can be applied to explain the properties, that was not explained by Valence bond theory. This theory explained the paramagnetic nature of $\text{O}_{\text{2}}^{\text{+}}$ ion as per Valence bond theory it should be diamagnetic.
- Molecular orbital diagram is the diagrammatic representation of all the molecular orbital and electronic configuration of molecular orbitals in a molecule.
- According to this theory the electrons in a molecule are present in the various molecular orbits. There are two types of molecular orbital – bonding molecular orbital and antibonding molecular orbital.
- The number of molecular orbitals formed is equal to the number of combining atomic orbitals.
Complete Solution :
The bonding molecular orbital has lower energy and greater stability than the corresponding ant-bonding molecular orbitals. The molecular orbitals of a molecule are filled according to the Aufbau principle obeying the Pauli’s exclusion principle and Hund’s rule.
The order of energies of molecular orbitals for homonuclear diatomic molecule like $\text{O}_{\text{2}}^{{}}$, ${{\text{F}}_{\text{2}}}$ and \[\text{N}{{\text{e}}_{\text{2}}}\] is -$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$, $\text{ }\!\!\sigma\!\!\text{ 2s}$, ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$, $\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$, $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}=\,\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}=\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$
Where- $\text{ }\!\!\sigma\!\!\text{ }$,$\text{ }\!\!\pi\!\!\text{ }$ represents the bonding molecular orbital, while ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}$ represents the anti-bonding molecular orbital in a molecular orbital diagram.
- The electronic configuration of molecular orbital of $\text{O}_{\text{2}}^{\text{+}}$ ion, which contains $15\,{{e}^{-}}$ is formed by the loss of one electron from $\text{O}_{\text{2}}^{{}}$ molecule is -$\text{ }\!\!\sigma\!\!\text{ 1}{{\text{s}}^{2}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1}{{\text{s}}^{2}}$, $\text{ }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{2}}$, ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{s}}^{2}}$, $\text{ }\!\!\sigma\!\!\text{ 2p}_{\text{z}}^{\text{2}}$, $\text{ }\!\!\pi\!\!\text{ 2p}_{x}^{2}=\,\text{ }\!\!\pi\!\!\text{ 2p}_{y}^{2}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2p}_{\text{x}}^{\text{1}}=\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2p}_{\text{y}}^{\text{0}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2p}_{\text{z}}^{\text{0}}$.
So, it is clear that in molecular orbital diagram for$\text{O}_{\text{2}}^{\text{+}}$ion, the highest occupied orbital is ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}2{{\text{p}}_{\text{x}}}\,\text{anti-bonding}\,\text{MO}\,\text{orbital}$.
So, the correct answer is “Option C”.
Note: -Electronic configuration of molecular orbital must be according to Hund’s maximum multiplicity rule, according to which the orbital available in the subshell of a molecule are first filled singly with parallel spin electron before they begin to pair and subshell give maximum number of unpaired electron with parallel spin.
- Molecular orbital diagram is the diagrammatic representation of all the molecular orbital and electronic configuration of molecular orbitals in a molecule.
- According to this theory the electrons in a molecule are present in the various molecular orbits. There are two types of molecular orbital – bonding molecular orbital and antibonding molecular orbital.
- The number of molecular orbitals formed is equal to the number of combining atomic orbitals.
Complete Solution :
The bonding molecular orbital has lower energy and greater stability than the corresponding ant-bonding molecular orbitals. The molecular orbitals of a molecule are filled according to the Aufbau principle obeying the Pauli’s exclusion principle and Hund’s rule.
The order of energies of molecular orbitals for homonuclear diatomic molecule like $\text{O}_{\text{2}}^{{}}$, ${{\text{F}}_{\text{2}}}$ and \[\text{N}{{\text{e}}_{\text{2}}}\] is -$\text{ }\!\!\sigma\!\!\text{ 1s}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1s}$, $\text{ }\!\!\sigma\!\!\text{ 2s}$, ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2s}$, $\text{ }\!\!\sigma\!\!\text{ 2}{{\text{p}}_{z}}$, $\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{x}}}=\,\text{ }\!\!\pi\!\!\text{ 2}{{\text{p}}_{\text{y}}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{x}}}=\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2}{{\text{p}}_{\text{y}}}$
Where- $\text{ }\!\!\sigma\!\!\text{ }$,$\text{ }\!\!\pi\!\!\text{ }$ represents the bonding molecular orbital, while ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}$ represents the anti-bonding molecular orbital in a molecular orbital diagram.
- The electronic configuration of molecular orbital of $\text{O}_{\text{2}}^{\text{+}}$ ion, which contains $15\,{{e}^{-}}$ is formed by the loss of one electron from $\text{O}_{\text{2}}^{{}}$ molecule is -$\text{ }\!\!\sigma\!\!\text{ 1}{{\text{s}}^{2}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{1}{{\text{s}}^{2}}$, $\text{ }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{2}}$, ${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2}{{\text{s}}^{2}}$, $\text{ }\!\!\sigma\!\!\text{ 2p}_{\text{z}}^{\text{2}}$, $\text{ }\!\!\pi\!\!\text{ 2p}_{x}^{2}=\,\text{ }\!\!\pi\!\!\text{ 2p}_{y}^{2}$, ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2p}_{\text{x}}^{\text{1}}=\,{{\text{ }\!\!\pi\!\!\text{ }}^{*}}\text{2p}_{\text{y}}^{\text{0}}$,${{\text{ }\!\!\sigma\!\!\text{ }}^{*}}\text{2p}_{\text{z}}^{\text{0}}$.
So, it is clear that in molecular orbital diagram for$\text{O}_{\text{2}}^{\text{+}}$ion, the highest occupied orbital is ${{\text{ }\!\!\pi\!\!\text{ }}^{*}}2{{\text{p}}_{\text{x}}}\,\text{anti-bonding}\,\text{MO}\,\text{orbital}$.
So, the correct answer is “Option C”.
Note: -Electronic configuration of molecular orbital must be according to Hund’s maximum multiplicity rule, according to which the orbital available in the subshell of a molecule are first filled singly with parallel spin electron before they begin to pair and subshell give maximum number of unpaired electron with parallel spin.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

