
In how many ways can be the letter of the word ‘STRANGE’ be arranged so that
(a) The vowel may appear in the odd places
(b) The vowels are never separated
(c) The vowels never come together
Answer
583.2k+ views
Hint:There are 7 letters in the word ‘STRANGE’ in which two are vowels. There are four odd places. So, we have to find the total number of ways for these four places. The other 5 letters may be placed in the five places in 5! ways. By this we get the total number of required arrangements. If vowels are never separated, in this case consider all the vowels a single letter. If all the vowels never come together in this case, we subtract all vowels together from the total number of arrangements.
Complete step-by-step answer:
For finding number of ways of placing n things in r objects, we use ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Also, for arranging n objects without restrictions, we have $n!$ ways.
(a) There are 7 letters in the word ‘STRANGE’ amongst which 2 are vowels and there are 4 odd places (1, 3, 5, 7) where these two vowels are to be placed together.
Total number of ways can be expressed by replacing n = 4 and r = 2,
$\begin{align}
& {}^{4}{{P}_{2}}=\dfrac{4!}{\left( 4-2 \right)!} \\
& =\dfrac{4!}{2!} \\
& =\dfrac{4\times 3\times 2!}{2!} \\
& =4\times 3=12 \\
\end{align}$
And corresponding to these 12 ways the other 5 letters may be placed in 5! ways $=5\times 4\times 3\times 2\times 1=120$.
Therefore, the total number of required arrangements = $12\times 120=1440$ ways.
(b) Now, vowels are not to be separated. So, we consider all vowels as a single letter.
There are six letters S, T, R, N, G, (AE) , so they can arrange themselves in 6! ways and two vowels can arrange themselves in 2! ways.
Total number of required arrangements \[=6!\times 2!=6\times 5\times 4\times 3\times 2\times 1\times 2\times 1=1440\] ways.
(c) Now, for the number of arrangements when all vowels never come together, we subtract the total arrangement where all vowels have occurred together from the total number of arrangements.
The total number of arrangements = 7! = 5040 ways
And the number of arrangements in which the vowels do not come together $=7!-6!2!$
number of arrangements in which the vowels do not come together $=5040 -1440 = 3600$ ways.
Note: Knowledge of permutation and arrangement of objects under some restriction and without restriction is must for solving this problem. Students must be careful while making the possible cases. They must consider all the permutations in word like in part (b), a common mistake is done by not considering the arrangements of vowels.
Complete step-by-step answer:
For finding number of ways of placing n things in r objects, we use ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Also, for arranging n objects without restrictions, we have $n!$ ways.
(a) There are 7 letters in the word ‘STRANGE’ amongst which 2 are vowels and there are 4 odd places (1, 3, 5, 7) where these two vowels are to be placed together.
Total number of ways can be expressed by replacing n = 4 and r = 2,
$\begin{align}
& {}^{4}{{P}_{2}}=\dfrac{4!}{\left( 4-2 \right)!} \\
& =\dfrac{4!}{2!} \\
& =\dfrac{4\times 3\times 2!}{2!} \\
& =4\times 3=12 \\
\end{align}$
And corresponding to these 12 ways the other 5 letters may be placed in 5! ways $=5\times 4\times 3\times 2\times 1=120$.
Therefore, the total number of required arrangements = $12\times 120=1440$ ways.
(b) Now, vowels are not to be separated. So, we consider all vowels as a single letter.
There are six letters S, T, R, N, G, (AE) , so they can arrange themselves in 6! ways and two vowels can arrange themselves in 2! ways.
Total number of required arrangements \[=6!\times 2!=6\times 5\times 4\times 3\times 2\times 1\times 2\times 1=1440\] ways.
(c) Now, for the number of arrangements when all vowels never come together, we subtract the total arrangement where all vowels have occurred together from the total number of arrangements.
The total number of arrangements = 7! = 5040 ways
And the number of arrangements in which the vowels do not come together $=7!-6!2!$
number of arrangements in which the vowels do not come together $=5040 -1440 = 3600$ ways.
Note: Knowledge of permutation and arrangement of objects under some restriction and without restriction is must for solving this problem. Students must be careful while making the possible cases. They must consider all the permutations in word like in part (b), a common mistake is done by not considering the arrangements of vowels.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

