
In how many ways 20 identical bananas may be divided among 4 persons and if each person is to be given at least one banana?
A.10626, 4845
B.1771, 969
C.2024, 1140
D.None of these
Answer
588k+ views
Hint: In this question, 20 identical bananas are distributed among 4 persons. This represents the number of ways to partition n identical things in r distinct slots, which can be solved by using the formula $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ and to the second question that if each person is given at least one banana, then 4 persons will get each a banana. The remaining 16 bananas are distributed among 4 persons. And with comes back to same formula $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $
Complete step-by-step answer:
Given, n = 20, r=4
We know that, ‘n’ identical things can be divided in r distinct slots in $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ ways.
$ \Rightarrow $ $ 20 + 4 - {1_{{{\text{C}}_{4 - 1}}}} $ = $ {23_{{{\text{C}}_3}}} $
Since, $ {{\text{n}}_{{{\text{C}}_r}}} $ = $ \dfrac{{{\text{n}}!}}{{\left( {{\text{n - r}}} \right)! \times {\text{r!}}}} $
Therefore, $ {23_{{{\text{C}}_3}}} = \dfrac{{23!}}{{\left( {23 - 3} \right)! \times 3!}} = \dfrac{{23!}}{{20! \times 3!}} = \dfrac{{23 \times 22 \times 21 \times 20!}}{{20! \times 3!}} = \dfrac{{23 \times 22 \times 21}}{{3 \times 2}} = 23 \times 11 \times 7 = 1771 $
20 Identical bananas can be divided can be distributed among 4 persons in 1771 ways
And now each person gets at least one banana,
$ \Rightarrow 20 - 4 = 16 $
Therefore, here n=16 and r=4
We know that, ‘n’ identical things can be divided in r distinct slots in $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ ways.
$ \Rightarrow $ $ 16 + 4 - {1_{{{\text{C}}_{4 - 1}}}} $ = $ {19_{{{\text{C}}_3}}} $
Since, $ {{\text{n}}_{{{\text{C}}_r}}} $ = $ \dfrac{{{\text{n}}!}}{{\left( {{\text{n - r}}} \right)! \times {\text{r!}}}} $
Therefore, $ {19_{{{\text{C}}_3}}} = \dfrac{{19!}}{{\left( {19 - 3} \right)! \times 3!}} = \dfrac{{19!}}{{16! \times 3!}} = \dfrac{{19 \times 18 \times 17 \times 16!}}{{16! \times 3!}} = \dfrac{{19 \times 18 \times 17}}{{3 \times 2}} = 19 \times 3 \times 17 = 969 $
20 Identical bananas can be divided and can be distributed among 4 persons with each person being given at least one banana in 969 ways.
Note: We can solve the second question using, the number of ways to partition n identical things in r distinct slots so that each slot gets at least 1 is given by $ {\text{n - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ and Number of ways to partition n distinct things in r distinct slots is given by $ {{\text{r}}^{\text{n}}} $
Complete step-by-step answer:
Given, n = 20, r=4
We know that, ‘n’ identical things can be divided in r distinct slots in $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ ways.
$ \Rightarrow $ $ 20 + 4 - {1_{{{\text{C}}_{4 - 1}}}} $ = $ {23_{{{\text{C}}_3}}} $
Since, $ {{\text{n}}_{{{\text{C}}_r}}} $ = $ \dfrac{{{\text{n}}!}}{{\left( {{\text{n - r}}} \right)! \times {\text{r!}}}} $
Therefore, $ {23_{{{\text{C}}_3}}} = \dfrac{{23!}}{{\left( {23 - 3} \right)! \times 3!}} = \dfrac{{23!}}{{20! \times 3!}} = \dfrac{{23 \times 22 \times 21 \times 20!}}{{20! \times 3!}} = \dfrac{{23 \times 22 \times 21}}{{3 \times 2}} = 23 \times 11 \times 7 = 1771 $
20 Identical bananas can be divided can be distributed among 4 persons in 1771 ways
And now each person gets at least one banana,
$ \Rightarrow 20 - 4 = 16 $
Therefore, here n=16 and r=4
We know that, ‘n’ identical things can be divided in r distinct slots in $ {\text{n + r - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ ways.
$ \Rightarrow $ $ 16 + 4 - {1_{{{\text{C}}_{4 - 1}}}} $ = $ {19_{{{\text{C}}_3}}} $
Since, $ {{\text{n}}_{{{\text{C}}_r}}} $ = $ \dfrac{{{\text{n}}!}}{{\left( {{\text{n - r}}} \right)! \times {\text{r!}}}} $
Therefore, $ {19_{{{\text{C}}_3}}} = \dfrac{{19!}}{{\left( {19 - 3} \right)! \times 3!}} = \dfrac{{19!}}{{16! \times 3!}} = \dfrac{{19 \times 18 \times 17 \times 16!}}{{16! \times 3!}} = \dfrac{{19 \times 18 \times 17}}{{3 \times 2}} = 19 \times 3 \times 17 = 969 $
20 Identical bananas can be divided and can be distributed among 4 persons with each person being given at least one banana in 969 ways.
Note: We can solve the second question using, the number of ways to partition n identical things in r distinct slots so that each slot gets at least 1 is given by $ {\text{n - }}{{\text{1}}_{{{\text{C}}_{r - 1}}}} $ and Number of ways to partition n distinct things in r distinct slots is given by $ {{\text{r}}^{\text{n}}} $
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

