
In fcc structure, octahedral sites are present at:
A). Edge centres
B). Face centres
C). Body centers
D). Corners
Answer
504k+ views
Hint: The octahedral voids are located at the body centres and at the centres of the 12 edges of the cube. Number of octahedral voids per unit cell in a cubic close packing is 4.
Complete step-by-step answer:
-Let us consider the unit cell of cubic close packing lattice structure.
-The body centre of the cube is not occupied by any atom but its surrounded by six atoms at the face centres.
-If the atoms at the face centres are joined, a regular octahedron is generated.
-Thus, an octahedral void is located at the body center of the unit cell of ccp lattice.
-In addition to the octahedral void at the body centre there are 12 octahedral voids at the centres of the 12 edges of the cube.
-Each octahedral void on the edge centre is being shared by four unit cells.
-Thus, in cubic close packing the number of octahedral voids per unit cell can be calculated as under:
Number of octahedral voids per unit cell in a cubic close packing
= 1 (centre of the cubic) + 12 (at edge centres) x
= 1 + 3 = 4
Clearly the answers are A and C.
Note: Do not confuse with the tetrahedral voids. There is one such void in the tetrahedron of ccp lattice. There are a total of eight tetrahedral voids in the unit cell of ccp structure. They are located on the body centres of the cube structure.
Complete step-by-step answer:
-Let us consider the unit cell of cubic close packing lattice structure.

-The body centre of the cube is not occupied by any atom but its surrounded by six atoms at the face centres.
-If the atoms at the face centres are joined, a regular octahedron is generated.
-Thus, an octahedral void is located at the body center of the unit cell of ccp lattice.
-In addition to the octahedral void at the body centre there are 12 octahedral voids at the centres of the 12 edges of the cube.
-Each octahedral void on the edge centre is being shared by four unit cells.
-Thus, in cubic close packing the number of octahedral voids per unit cell can be calculated as under:
Number of octahedral voids per unit cell in a cubic close packing
= 1 (centre of the cubic) + 12 (at edge centres) x
= 1 + 3 = 4
Clearly the answers are A and C.
Note: Do not confuse with the tetrahedral voids. There is one such void in the tetrahedron of ccp lattice. There are a total of eight tetrahedral voids in the unit cell of ccp structure. They are located on the body centres of the cube structure.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE
