
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) \[If{\rm{ }}x \in A{\rm{ }}\,and\, {\rm{ }}A \in B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(ii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \in C,{\rm{ }}\,Then\,{\rm{ }}A \in C\]
(iii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \subset C,{\rm{ }}\,Then\,{\rm{ }}A \subset C\]
(iv) \[If{\rm{ }}A \not\subset B{\rm{ }}and{\rm{ }}B \not\subset C,{\rm{ }}\,Then\,{\rm{ }}A \not\subset C\]
(v) \[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \not\subset B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(vi) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}x \notin B,{\rm{ }}\,Then\,{\rm{ }}x \notin A\]
Answer
574.8k+ views
Hint: Here, we must take the examples in set A, B and x, to check the different types of relation between them. We can also take example sets to illustrate this relationship for better and practical understanding of the question.
Complete step-by-step answer:
Now, let us assume : \[ \subset \to shows{\rm{ a\, symbol\, of\, subset,}}\]\[A \subset B \to shows {\rm{ all\, the\, elements\, of\, A\, are\, present\, in\, B,}}\] \[ \in \to shows\,{\rm{ the\, symbol\, of\, belongs\, to\, the\, element\, of\, a\, set\,}}\]\[ \notin \to\, shows\,{\rm{ the\, symbol\, of\, does\, not\, belongs\, to\, the\, element\, of\, a\, set,,}}\]\[ \not\subset \to \,shows{\rm{ a\, symbol\, of\, does\, not\, belongs\, to\, a\, subset}}{\rm{.}}\]
(i)\[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \in B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
Let us assume, \[A = \left\{ {2,3} \right\}\]
As, 2 is an element of the set.
Let, \[x = 2,2 \in \left\{ {2,3} \right\}\]
As, it is given \[A \in B\] i.e all the elements of set A must belong to set B.
Let us take \[B = \left\{ {\left\{ {2,3} \right\},4,5,6} \right\}\]
We have to prove that \[x \in B\]
\[ \Rightarrow 2 \notin \left\{ {\left\{ {2,3} \right\},4,5,6} \right\}\]
As 2 is not present in set B.
Hence, the given statement is false.
(ii)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \in C,{\rm{ }}\,Then\,{\rm{ }}A \in C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\]
Also, it is given \[B \in C\] i.e all the elements of set B must belong to set C.
Let us take \[C = \left\{ {0,\left\{ {1,3} \right\},4} \right\}\]
We have to prove that \[A \in C\]
\[ \Rightarrow 3 \notin \left\{ {0,\left\{ {1,3} \right\},4} \right\}\]
As 3 is not present in set C.
Hence, the given statement is false.
(iii)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \subset C,{\rm{ }}\,Then\,{\rm{ }}A \subset C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\]
Aslo, it is given \[B \subset C\] i.e all the elements of set B must be present in set C.
So, let us take \[C = \left\{ {1,3,4} \right\}\]
We have to prove that \[A \subset C\].
As all the elements of A are present in C.
Hence, the given statement is true.
(iv)\[If{\rm{ }}A \not\subset B{\rm{ }}\,and\,{\rm{ }}B \not\subset C,{\rm{ }}\,Then\,{\rm{ }}A \not\subset C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \not\subset B\] i.e all the elements of set A must not be present in set B.
Let us take \[B = \left\{ {1,2} \right\}\]
Aslo, it is given \[B \not\subset C\] i.e all the elements of set A must not be present in set C.
So, let us take \[C = \left\{ {3,4,5} \right\}\]
We have to prove that \[A \not\subset C\].
But 3 is present in set C. \[\therefore A \subset C\]
As all the elements of A are present in C.
Hence, the given statement is false.
(v)\[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \not\subset B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
Let us assume, \[A = \left\{ {2,3} \right\}\]
As, 2 is an element of the set.
Let, \[x = 2,2 \in \left\{ {2,3} \right\}\]
As, it is given \[A \not\subset B\] i.e all the elements of set A must not be present in set B.
Let us take \[B = \left\{ {1,4} \right\}\]
We have to prove that \[x \in B\].
\[ \Rightarrow 2 \notin \left\{ {1,4} \right\}\]
Hence, the given statement is false.
(vi)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}x \notin B,{\rm{ }}\,Then\,{\rm{ }}x \notin A\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\] and \[x = 2\]
As, it is given \[x \notin B\] i.e \[2 \notin \left\{ {1,3} \right\}\]
We have to prove that \[x \notin A\].
\[ \Rightarrow 2 \notin 3\]
Hence, the given statement is true.
Note: Here with the help of some basic examples it could be easily understandable and it will really help you to give the practically based answers whether the statement is true or false and you can verify these problems at the same time also.
Complete step-by-step answer:
Now, let us assume : \[ \subset \to shows{\rm{ a\, symbol\, of\, subset,}}\]\[A \subset B \to shows {\rm{ all\, the\, elements\, of\, A\, are\, present\, in\, B,}}\] \[ \in \to shows\,{\rm{ the\, symbol\, of\, belongs\, to\, the\, element\, of\, a\, set\,}}\]\[ \notin \to\, shows\,{\rm{ the\, symbol\, of\, does\, not\, belongs\, to\, the\, element\, of\, a\, set,,}}\]\[ \not\subset \to \,shows{\rm{ a\, symbol\, of\, does\, not\, belongs\, to\, a\, subset}}{\rm{.}}\]
(i)\[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \in B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
Let us assume, \[A = \left\{ {2,3} \right\}\]
As, 2 is an element of the set.
Let, \[x = 2,2 \in \left\{ {2,3} \right\}\]
As, it is given \[A \in B\] i.e all the elements of set A must belong to set B.
Let us take \[B = \left\{ {\left\{ {2,3} \right\},4,5,6} \right\}\]
We have to prove that \[x \in B\]
\[ \Rightarrow 2 \notin \left\{ {\left\{ {2,3} \right\},4,5,6} \right\}\]
As 2 is not present in set B.
Hence, the given statement is false.
(ii)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \in C,{\rm{ }}\,Then\,{\rm{ }}A \in C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\]
Also, it is given \[B \in C\] i.e all the elements of set B must belong to set C.
Let us take \[C = \left\{ {0,\left\{ {1,3} \right\},4} \right\}\]
We have to prove that \[A \in C\]
\[ \Rightarrow 3 \notin \left\{ {0,\left\{ {1,3} \right\},4} \right\}\]
As 3 is not present in set C.
Hence, the given statement is false.
(iii)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \subset C,{\rm{ }}\,Then\,{\rm{ }}A \subset C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\]
Aslo, it is given \[B \subset C\] i.e all the elements of set B must be present in set C.
So, let us take \[C = \left\{ {1,3,4} \right\}\]
We have to prove that \[A \subset C\].
As all the elements of A are present in C.
Hence, the given statement is true.
(iv)\[If{\rm{ }}A \not\subset B{\rm{ }}\,and\,{\rm{ }}B \not\subset C,{\rm{ }}\,Then\,{\rm{ }}A \not\subset C\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \not\subset B\] i.e all the elements of set A must not be present in set B.
Let us take \[B = \left\{ {1,2} \right\}\]
Aslo, it is given \[B \not\subset C\] i.e all the elements of set A must not be present in set C.
So, let us take \[C = \left\{ {3,4,5} \right\}\]
We have to prove that \[A \not\subset C\].
But 3 is present in set C. \[\therefore A \subset C\]
As all the elements of A are present in C.
Hence, the given statement is false.
(v)\[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \not\subset B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
Let us assume, \[A = \left\{ {2,3} \right\}\]
As, 2 is an element of the set.
Let, \[x = 2,2 \in \left\{ {2,3} \right\}\]
As, it is given \[A \not\subset B\] i.e all the elements of set A must not be present in set B.
Let us take \[B = \left\{ {1,4} \right\}\]
We have to prove that \[x \in B\].
\[ \Rightarrow 2 \notin \left\{ {1,4} \right\}\]
Hence, the given statement is false.
(vi)\[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}x \notin B,{\rm{ }}\,Then\,{\rm{ }}x \notin A\]
Let us assume, \[A = \left\{ 3 \right\}\]
As, it is given \[A \subset B\] i.e all the elements of set A must be present in set B.
Let us take \[B = \left\{ {1,3} \right\}\] and \[x = 2\]
As, it is given \[x \notin B\] i.e \[2 \notin \left\{ {1,3} \right\}\]
We have to prove that \[x \notin A\].
\[ \Rightarrow 2 \notin 3\]
Hence, the given statement is true.
Note: Here with the help of some basic examples it could be easily understandable and it will really help you to give the practically based answers whether the statement is true or false and you can verify these problems at the same time also.
Watch videos on
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
(i) \[If{\rm{ }}x \in A{\rm{ }}\,and\, {\rm{ }}A \in B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(ii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \in C,{\rm{ }}\,Then\,{\rm{ }}A \in C\]
(iii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \subset C,{\rm{ }}\,Then\,{\rm{ }}A \subset C\]
(iv) \[If{\rm{ }}A \not\subset B{\rm{ }}and{\rm{ }}B \not\subset C,{\rm{ }}\,Then\,{\rm{ }}A \not\subset C\]
(v) \[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \not\subset B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(vi) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}x \notin B,{\rm{ }}\,Then\,{\rm{ }}x \notin A\]
(i) \[If{\rm{ }}x \in A{\rm{ }}\,and\, {\rm{ }}A \in B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(ii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \in C,{\rm{ }}\,Then\,{\rm{ }}A \in C\]
(iii) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}B \subset C,{\rm{ }}\,Then\,{\rm{ }}A \subset C\]
(iv) \[If{\rm{ }}A \not\subset B{\rm{ }}and{\rm{ }}B \not\subset C,{\rm{ }}\,Then\,{\rm{ }}A \not\subset C\]
(v) \[If{\rm{ }}x \in A{\rm{ }}\,and\,{\rm{ }}A \not\subset B,{\rm{ }}\,Then\,{\rm{ }}x \in B\]
(vi) \[If{\rm{ }}A \subset B{\rm{ }}\,and\,{\rm{ }}x \notin B,{\rm{ }}\,Then\,{\rm{ }}x \notin A\]

Class 11 MATHS Miscellaneous (Question - 2) | Sets Class 11 Chapter 1| NCERT | Ratan Kalra Sir
Subscribe
likes
46 Views
2 years ago
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

