
In $ \Delta ABC $ , if $ \sin A:\sin C = \sin (A - B):\sin (B - C) $ , then $ {a^2} $ , $ {b^2} $ and $ {c^2} $ are in
A. A.P
B. G.P
C. H.P
D. None of these
Answer
468k+ views
Hint: In this question, a triangle is given which satisfy the condition $ \sin A:\sin C = \sin (A - B):\sin (B - C) $ , we have to find relation of $ {a^2} $ , $ {b^2} $ and $ {c^2} $ .
Use the property of a triangle, the sum of all angles of a triangle is $ {180^ \circ } $ , to write the angle in terms of the other two angles.
$ \Rightarrow $ $ A + B + C = {180^ \circ } $
According to the trigonometrically ratios of angles \[\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right)\] , \[\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta \] .
Now, use the trigonometric formula, \[\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B\]
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
$ \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k $
From this relation write $ \sin A $ , $ \sin B $ and $ \sin C $ in terms of a, b, c and k.
If $ {a^2} $ , $ {b^2} $ and $ {c^2} $ are in A.P. then the difference between the consecutive terms is the same.
$ \Rightarrow {b^2} - {a^2} = {c^2} - {b^2} $
$ \Rightarrow 2{b^2} = {c^2} + {a^2} $
Complete step-by-step answer:
Consider a triangle , where A, B and C are the angles and a, b, and c are the sides.
Given is the equation, $ \sin A:\sin C = \sin (A - B):\sin (B - C) $ which is same as,
$ \dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} \ldots (1) $
Since the sum of all angles of a triangle is $ {180^ \circ } $ .
$ A + B + C = {180^ \circ } $
$ \Rightarrow A = {180^ \circ } - (B + C) \ldots (2) $
And, find the angle C,
$ C = {180^ \circ } - (A + B) \ldots (3) $
Substitute the value of A from equation $ (1) $ and C from equation $ (2) $ into the left-hand side of the equation $ (3) $ .
$ \dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
$ \dfrac{{\sin ({{180}^ \circ } - (B + C))}}{{\sin ({{180}^ \circ } - (A + B))}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
Apply the trigonometrically ratios of angles \[\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right)\] , \[\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta \] .
$ \therefore \dfrac{{\sin (B + C)}}{{\sin (A + B)}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
After cross multiplying the equation we get,
$ \Rightarrow \sin (B + C)\sin (B - C) = \sin (A - B)\sin (A + B) \ldots (4) $
Apply the trigonometric formula, \[\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B\] to the equation $ (4) $ .
$ \Rightarrow {\sin ^2}B - {\sin ^2}C = {\sin ^2}A - {\sin ^2}B $
$ \Rightarrow 2{\sin ^2}B = {\sin ^2}A + {\sin ^2}C \ldots (5) $
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
$ \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k $
Take the ratio,
$ \dfrac{b}{{\sin B}} = k $
$ \Rightarrow \dfrac{b}{k} = \sin B $
Now, take the ratio,
$ \dfrac{a}{{\sin A}} = k $
$ \Rightarrow \dfrac{a}{k} = \sin A $
Now, take the ratio,
$ \dfrac{c}{{\sin C}} = k $
$ \Rightarrow \dfrac{c}{k} = \sin C $
Substitute the values of $ \sin A $ , $ \sin B $ and $ \sin C $ into the equation $ (5) $
$ \Rightarrow 2{\left( {\dfrac{b}{k}} \right)^2} = {\left( {\dfrac{a}{k}} \right)^2} + {\left( {\dfrac{c}{k}} \right)^2} $
$ \Rightarrow \dfrac{{2{b^2}}}{{{k^2}}} = \dfrac{{{a^2} + {c^2}}}{{{k^2}}} $
$ \Rightarrow 2{b^2} = {a^2} + {c^2} $
If $ {a^2} $ , $ {b^2} $ and $ {c^2} $ are in A.P. then the difference between the consecutive terms is the same.
$ \Rightarrow {b^2} - {a^2} = {c^2} - {b^2} $
$ \Rightarrow 2{b^2} = {c^2} + {a^2} $
Correct Answer : A) A.P.
Note:
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. That is if a, b ,c are in A.P. then, \[b - a = c - b\] . A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is same i.e. For example 2,4,8,16 is a GP because ratio of any two consecutive terms in the series is same , \[\dfrac{4}{2}{\text{ }} = \dfrac{8}{4} = \dfrac{{16}}{8} = 2\] . A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, a ,b, c, are in HP if $ \dfrac{1}{a} $ , $ \dfrac{1}{b} $ , $ \dfrac{1}{c} $ are in AP.
Use the property of a triangle, the sum of all angles of a triangle is $ {180^ \circ } $ , to write the angle in terms of the other two angles.
$ \Rightarrow $ $ A + B + C = {180^ \circ } $
According to the trigonometrically ratios of angles \[\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right)\] , \[\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta \] .
Now, use the trigonometric formula, \[\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B\]
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
$ \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k $
From this relation write $ \sin A $ , $ \sin B $ and $ \sin C $ in terms of a, b, c and k.
If $ {a^2} $ , $ {b^2} $ and $ {c^2} $ are in A.P. then the difference between the consecutive terms is the same.
$ \Rightarrow {b^2} - {a^2} = {c^2} - {b^2} $
$ \Rightarrow 2{b^2} = {c^2} + {a^2} $
Complete step-by-step answer:
Consider a triangle , where A, B and C are the angles and a, b, and c are the sides.
Given is the equation, $ \sin A:\sin C = \sin (A - B):\sin (B - C) $ which is same as,
$ \dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} \ldots (1) $
Since the sum of all angles of a triangle is $ {180^ \circ } $ .
$ A + B + C = {180^ \circ } $
$ \Rightarrow A = {180^ \circ } - (B + C) \ldots (2) $
And, find the angle C,
$ C = {180^ \circ } - (A + B) \ldots (3) $
Substitute the value of A from equation $ (1) $ and C from equation $ (2) $ into the left-hand side of the equation $ (3) $ .
$ \dfrac{{\sin A}}{{\sin C}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
$ \dfrac{{\sin ({{180}^ \circ } - (B + C))}}{{\sin ({{180}^ \circ } - (A + B))}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
Apply the trigonometrically ratios of angles \[\left( {180^\circ {\text{ }} - {\text{ }}\theta } \right)\] , \[\sin \left( {180^\circ {\text{ }} - {\text{ }}\theta } \right) = \sin \theta \] .
$ \therefore \dfrac{{\sin (B + C)}}{{\sin (A + B)}} = \dfrac{{\sin (A - B)}}{{\sin (B - C)}} $
After cross multiplying the equation we get,
$ \Rightarrow \sin (B + C)\sin (B - C) = \sin (A - B)\sin (A + B) \ldots (4) $
Apply the trigonometric formula, \[\sin (A + B)\sin (A - B) = {\sin ^2}A - {\sin ^2}B\] to the equation $ (4) $ .
$ \Rightarrow {\sin ^2}B - {\sin ^2}C = {\sin ^2}A - {\sin ^2}B $
$ \Rightarrow 2{\sin ^2}B = {\sin ^2}A + {\sin ^2}C \ldots (5) $
Apply the Sine rule of the triangle,
If a, b and c are the sides of the triangle and their corresponding opposite angles are A , B and C then,
$ \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k $
Take the ratio,
$ \dfrac{b}{{\sin B}} = k $
$ \Rightarrow \dfrac{b}{k} = \sin B $
Now, take the ratio,
$ \dfrac{a}{{\sin A}} = k $
$ \Rightarrow \dfrac{a}{k} = \sin A $
Now, take the ratio,
$ \dfrac{c}{{\sin C}} = k $
$ \Rightarrow \dfrac{c}{k} = \sin C $
Substitute the values of $ \sin A $ , $ \sin B $ and $ \sin C $ into the equation $ (5) $
$ \Rightarrow 2{\left( {\dfrac{b}{k}} \right)^2} = {\left( {\dfrac{a}{k}} \right)^2} + {\left( {\dfrac{c}{k}} \right)^2} $
$ \Rightarrow \dfrac{{2{b^2}}}{{{k^2}}} = \dfrac{{{a^2} + {c^2}}}{{{k^2}}} $
$ \Rightarrow 2{b^2} = {a^2} + {c^2} $
If $ {a^2} $ , $ {b^2} $ and $ {c^2} $ are in A.P. then the difference between the consecutive terms is the same.
$ \Rightarrow {b^2} - {a^2} = {c^2} - {b^2} $
$ \Rightarrow 2{b^2} = {c^2} + {a^2} $
Correct Answer : A) A.P.
Note:
An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. That is if a, b ,c are in A.P. then, \[b - a = c - b\] . A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is same i.e. For example 2,4,8,16 is a GP because ratio of any two consecutive terms in the series is same , \[\dfrac{4}{2}{\text{ }} = \dfrac{8}{4} = \dfrac{{16}}{8} = 2\] . A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, a ,b, c, are in HP if $ \dfrac{1}{a} $ , $ \dfrac{1}{b} $ , $ \dfrac{1}{c} $ are in AP.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
