
In $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ , then the triangle is
A. equilateral
B. isosceles
C. right-angled
D. scalene
Answer
543.9k+ views
Hint: We first try to use the properties of triangles theorem involving the area of the triangle and the semi-perimeter of the triangle. Putting the values we get the particular condition about the triangle.
Complete step by step solution:
It’s given that for $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ .
We can rewrite the given conditions using the theorems where $ r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b},{{r}_{3}}=\dfrac{\Delta }{s-c} $ . Here $ \Delta $ represents the area and $ s $ represents the semi-perimeter of $ \Delta ABC $ .
We put these values in $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ to find $ \dfrac{\Delta }{s}\times \dfrac{\Delta }{s-a}=\dfrac{\Delta }{s-b}\times \dfrac{\Delta }{s-c} $ .
We simplify the equation to get $ \left( s-b \right)\left( s-c \right)=s\left( s-a \right) $ .
Therefore,
$
\left( s-b \right)\left( s-c \right)=s\left( s-a \right) \\
\Rightarrow {{s}^{2}}-s\left( b+c \right)+bc={{s}^{2}}-as \\
\Rightarrow bc=s\left( b+c-a \right) \\
\Rightarrow 2bc=2s\left( b+c-a \right) \;
$
Now we know that $ 2s=a+b+c $ . Putting the value, we get
$
2bc=2s\left( b+c-a \right) \\
\Rightarrow 2bc=\left( a+b+c \right)\left( b+c-a \right) \;
$
Now we use the identity where $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
Therefore, $ 2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} $ .
Simplifying we get
$
2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} \\
\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}=0 \\
\Rightarrow {{a}^{2}}={{b}^{2}}+{{c}^{2}} \;
$
So, the triangle is right-angled by the converse of Pythagoras. The correct option is C.
So, the correct answer is “Option C”.
Note: We can also use the circle circumscribing the triangle to find the relation between the sides with the area. Using those relations, we can find the relations between the sides directly.
Complete step by step solution:
It’s given that for $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ .
We can rewrite the given conditions using the theorems where $ r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b},{{r}_{3}}=\dfrac{\Delta }{s-c} $ . Here $ \Delta $ represents the area and $ s $ represents the semi-perimeter of $ \Delta ABC $ .
We put these values in $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ to find $ \dfrac{\Delta }{s}\times \dfrac{\Delta }{s-a}=\dfrac{\Delta }{s-b}\times \dfrac{\Delta }{s-c} $ .
We simplify the equation to get $ \left( s-b \right)\left( s-c \right)=s\left( s-a \right) $ .
Therefore,
$
\left( s-b \right)\left( s-c \right)=s\left( s-a \right) \\
\Rightarrow {{s}^{2}}-s\left( b+c \right)+bc={{s}^{2}}-as \\
\Rightarrow bc=s\left( b+c-a \right) \\
\Rightarrow 2bc=2s\left( b+c-a \right) \;
$
Now we know that $ 2s=a+b+c $ . Putting the value, we get
$
2bc=2s\left( b+c-a \right) \\
\Rightarrow 2bc=\left( a+b+c \right)\left( b+c-a \right) \;
$
Now we use the identity where $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
Therefore, $ 2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} $ .
Simplifying we get
$
2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} \\
\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}=0 \\
\Rightarrow {{a}^{2}}={{b}^{2}}+{{c}^{2}} \;
$
So, the triangle is right-angled by the converse of Pythagoras. The correct option is C.
So, the correct answer is “Option C”.
Note: We can also use the circle circumscribing the triangle to find the relation between the sides with the area. Using those relations, we can find the relations between the sides directly.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


