
In $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ , then the triangle is
A. equilateral
B. isosceles
C. right-angled
D. scalene
Answer
448.5k+ views
Hint: We first try to use the properties of triangles theorem involving the area of the triangle and the semi-perimeter of the triangle. Putting the values we get the particular condition about the triangle.
Complete step by step solution:
It’s given that for $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ .
We can rewrite the given conditions using the theorems where $ r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b},{{r}_{3}}=\dfrac{\Delta }{s-c} $ . Here $ \Delta $ represents the area and $ s $ represents the semi-perimeter of $ \Delta ABC $ .
We put these values in $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ to find $ \dfrac{\Delta }{s}\times \dfrac{\Delta }{s-a}=\dfrac{\Delta }{s-b}\times \dfrac{\Delta }{s-c} $ .
We simplify the equation to get $ \left( s-b \right)\left( s-c \right)=s\left( s-a \right) $ .
Therefore,
$
\left( s-b \right)\left( s-c \right)=s\left( s-a \right) \\
\Rightarrow {{s}^{2}}-s\left( b+c \right)+bc={{s}^{2}}-as \\
\Rightarrow bc=s\left( b+c-a \right) \\
\Rightarrow 2bc=2s\left( b+c-a \right) \;
$
Now we know that $ 2s=a+b+c $ . Putting the value, we get
$
2bc=2s\left( b+c-a \right) \\
\Rightarrow 2bc=\left( a+b+c \right)\left( b+c-a \right) \;
$
Now we use the identity where $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
Therefore, $ 2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} $ .
Simplifying we get
$
2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} \\
\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}=0 \\
\Rightarrow {{a}^{2}}={{b}^{2}}+{{c}^{2}} \;
$
So, the triangle is right-angled by the converse of Pythagoras. The correct option is C.
So, the correct answer is “Option C”.
Note: We can also use the circle circumscribing the triangle to find the relation between the sides with the area. Using those relations, we can find the relations between the sides directly.
Complete step by step solution:
It’s given that for $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ .
We can rewrite the given conditions using the theorems where $ r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b},{{r}_{3}}=\dfrac{\Delta }{s-c} $ . Here $ \Delta $ represents the area and $ s $ represents the semi-perimeter of $ \Delta ABC $ .
We put these values in $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ to find $ \dfrac{\Delta }{s}\times \dfrac{\Delta }{s-a}=\dfrac{\Delta }{s-b}\times \dfrac{\Delta }{s-c} $ .
We simplify the equation to get $ \left( s-b \right)\left( s-c \right)=s\left( s-a \right) $ .
Therefore,
$
\left( s-b \right)\left( s-c \right)=s\left( s-a \right) \\
\Rightarrow {{s}^{2}}-s\left( b+c \right)+bc={{s}^{2}}-as \\
\Rightarrow bc=s\left( b+c-a \right) \\
\Rightarrow 2bc=2s\left( b+c-a \right) \;
$
Now we know that $ 2s=a+b+c $ . Putting the value, we get
$
2bc=2s\left( b+c-a \right) \\
\Rightarrow 2bc=\left( a+b+c \right)\left( b+c-a \right) \;
$
Now we use the identity where $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
Therefore, $ 2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} $ .
Simplifying we get
$
2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} \\
\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}=0 \\
\Rightarrow {{a}^{2}}={{b}^{2}}+{{c}^{2}} \;
$
So, the triangle is right-angled by the converse of Pythagoras. The correct option is C.
So, the correct answer is “Option C”.
Note: We can also use the circle circumscribing the triangle to find the relation between the sides with the area. Using those relations, we can find the relations between the sides directly.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is the difference between Atleast and Atmost in class 9 maths CBSE
