Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

In $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ , then the triangle is
A. equilateral
B. isosceles
C. right-angled
D. scalene

Answer
VerifiedVerified
448.5k+ views
Hint: We first try to use the properties of triangles theorem involving the area of the triangle and the semi-perimeter of the triangle. Putting the values we get the particular condition about the triangle.

Complete step by step solution:
It’s given that for $ \Delta ABC $ , if $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ .
We can rewrite the given conditions using the theorems where $ r=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b},{{r}_{3}}=\dfrac{\Delta }{s-c} $ . Here $ \Delta $ represents the area and $ s $ represents the semi-perimeter of $ \Delta ABC $ .
We put these values in $ r{{r}_{1}}={{r}_{2}}{{r}_{3}} $ to find $ \dfrac{\Delta }{s}\times \dfrac{\Delta }{s-a}=\dfrac{\Delta }{s-b}\times \dfrac{\Delta }{s-c} $ .
We simplify the equation to get $ \left( s-b \right)\left( s-c \right)=s\left( s-a \right) $ .
Therefore,
 $
   \left( s-b \right)\left( s-c \right)=s\left( s-a \right) \\
  \Rightarrow {{s}^{2}}-s\left( b+c \right)+bc={{s}^{2}}-as \\
  \Rightarrow bc=s\left( b+c-a \right) \\
  \Rightarrow 2bc=2s\left( b+c-a \right) \;
 $
Now we know that $ 2s=a+b+c $ . Putting the value, we get
 $
   2bc=2s\left( b+c-a \right) \\
  \Rightarrow 2bc=\left( a+b+c \right)\left( b+c-a \right) \;
 $
Now we use the identity where $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
Therefore, $ 2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} $ .
Simplifying we get
 $
   2bc=\left( a+b+c \right)\left( b+c-a \right)={{\left( b+c \right)}^{2}}-{{a}^{2}} \\
  \Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}=0 \\
  \Rightarrow {{a}^{2}}={{b}^{2}}+{{c}^{2}} \;
 $
So, the triangle is right-angled by the converse of Pythagoras. The correct option is C.
So, the correct answer is “Option C”.

Note: We can also use the circle circumscribing the triangle to find the relation between the sides with the area. Using those relations, we can find the relations between the sides directly.
WhatsApp Banner