
In \[\Delta ABC\], if AD is the median, then show that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
Answer
597.3k+ views
Hint: First of all, carefully observe the given figure. Then we can notice that there are three right angled triangles. Use Pythagoras theorem to those three triangles and we get three equations. By suitable substitutions we can reach the solution of the given problem.
Complete step by step solution:
Given that \[AD\] is the median of \[\Delta ABC\].
So, clearly \[BD = CD...................................................\left( 1 \right)\]
Also, \[AE \bot BC\]
Now we have to prove that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
By Pythagoras theorem we know that, \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\]
In the Right \[\Delta ABE\], by applying the Pythagoras theorem, we have
\[A{B^2} = A{E^2} + B{E^2}.................................................\left( 2 \right)\]
And in Right \[\Delta ACE\], by applying Pythagoras theorem, we have
\[A{C^2} = A{E^2} + C{E^2}..............................................\left( 3 \right)\]
Adding \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = A{E^2} + B{E^2} + A{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{E^2} + B{E^2} + C{E^2}......................................................\left( 4 \right) \\
\]
In Right \[\Delta AED\], by applying Pythagoras theorem, we have
\[
A{D^2} = A{E^2} + E{D^2} \\
A{E^2} = A{D^2} - E{D^2}...................................................\left( 5 \right) \\
\]
Substituting equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2\left( {A{D^2} - E{D^2}} \right) + B{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{E^2} + C{E^2} \\
\]
Now, writing \[BE = BD - ED\] and \[CE = CD + ED\] from the figure, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + {\left( {BD - ED} \right)^2} + {\left( {CD + ED} \right)^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{D^2} - 2\left( {BD} \right)\left( {ED} \right) + E{D^2} + C{D^2} + 2\left( {CD} \right)\left( {ED} \right) + E{D^2} \\
\]
Grouping the common terms, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2E{D^2} - 2E{D^2} + 2ED\left( {CD - BD} \right) \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2ED\left( {CD - BD} \right) \\
\]
But, from equation \[\left( 1 \right)\] i.e., \[CD = BD\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + B{D^2} + 2ED\left( {BD - BD} \right) \\
\therefore A{B^2} + A{C^2} = 2A{D^2} + 2B{D^2} \\
\]
Hence, proved.
Note: Median of a triangle bisects its base into two equal parts in length. Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\].
Complete step by step solution:
Given that \[AD\] is the median of \[\Delta ABC\].
So, clearly \[BD = CD...................................................\left( 1 \right)\]
Also, \[AE \bot BC\]
Now we have to prove that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
By Pythagoras theorem we know that, \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\]
In the Right \[\Delta ABE\], by applying the Pythagoras theorem, we have
\[A{B^2} = A{E^2} + B{E^2}.................................................\left( 2 \right)\]
And in Right \[\Delta ACE\], by applying Pythagoras theorem, we have
\[A{C^2} = A{E^2} + C{E^2}..............................................\left( 3 \right)\]
Adding \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = A{E^2} + B{E^2} + A{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{E^2} + B{E^2} + C{E^2}......................................................\left( 4 \right) \\
\]
In Right \[\Delta AED\], by applying Pythagoras theorem, we have
\[
A{D^2} = A{E^2} + E{D^2} \\
A{E^2} = A{D^2} - E{D^2}...................................................\left( 5 \right) \\
\]
Substituting equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2\left( {A{D^2} - E{D^2}} \right) + B{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{E^2} + C{E^2} \\
\]
Now, writing \[BE = BD - ED\] and \[CE = CD + ED\] from the figure, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + {\left( {BD - ED} \right)^2} + {\left( {CD + ED} \right)^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{D^2} - 2\left( {BD} \right)\left( {ED} \right) + E{D^2} + C{D^2} + 2\left( {CD} \right)\left( {ED} \right) + E{D^2} \\
\]
Grouping the common terms, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2E{D^2} - 2E{D^2} + 2ED\left( {CD - BD} \right) \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2ED\left( {CD - BD} \right) \\
\]
But, from equation \[\left( 1 \right)\] i.e., \[CD = BD\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + B{D^2} + 2ED\left( {BD - BD} \right) \\
\therefore A{B^2} + A{C^2} = 2A{D^2} + 2B{D^2} \\
\]
Hence, proved.
Note: Median of a triangle bisects its base into two equal parts in length. Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

