
In \[\Delta ABC\], if AD is the median, then show that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
Answer
583.5k+ views
Hint: First of all, carefully observe the given figure. Then we can notice that there are three right angled triangles. Use Pythagoras theorem to those three triangles and we get three equations. By suitable substitutions we can reach the solution of the given problem.
Complete step by step solution:
Given that \[AD\] is the median of \[\Delta ABC\].
So, clearly \[BD = CD...................................................\left( 1 \right)\]
Also, \[AE \bot BC\]
Now we have to prove that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
By Pythagoras theorem we know that, \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\]
In the Right \[\Delta ABE\], by applying the Pythagoras theorem, we have
\[A{B^2} = A{E^2} + B{E^2}.................................................\left( 2 \right)\]
And in Right \[\Delta ACE\], by applying Pythagoras theorem, we have
\[A{C^2} = A{E^2} + C{E^2}..............................................\left( 3 \right)\]
Adding \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = A{E^2} + B{E^2} + A{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{E^2} + B{E^2} + C{E^2}......................................................\left( 4 \right) \\
\]
In Right \[\Delta AED\], by applying Pythagoras theorem, we have
\[
A{D^2} = A{E^2} + E{D^2} \\
A{E^2} = A{D^2} - E{D^2}...................................................\left( 5 \right) \\
\]
Substituting equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2\left( {A{D^2} - E{D^2}} \right) + B{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{E^2} + C{E^2} \\
\]
Now, writing \[BE = BD - ED\] and \[CE = CD + ED\] from the figure, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + {\left( {BD - ED} \right)^2} + {\left( {CD + ED} \right)^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{D^2} - 2\left( {BD} \right)\left( {ED} \right) + E{D^2} + C{D^2} + 2\left( {CD} \right)\left( {ED} \right) + E{D^2} \\
\]
Grouping the common terms, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2E{D^2} - 2E{D^2} + 2ED\left( {CD - BD} \right) \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2ED\left( {CD - BD} \right) \\
\]
But, from equation \[\left( 1 \right)\] i.e., \[CD = BD\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + B{D^2} + 2ED\left( {BD - BD} \right) \\
\therefore A{B^2} + A{C^2} = 2A{D^2} + 2B{D^2} \\
\]
Hence, proved.
Note: Median of a triangle bisects its base into two equal parts in length. Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\].
Complete step by step solution:
Given that \[AD\] is the median of \[\Delta ABC\].
So, clearly \[BD = CD...................................................\left( 1 \right)\]
Also, \[AE \bot BC\]
Now we have to prove that \[A{B^2} + A{C^2} = 2\left( {A{D^2} + B{D^2}} \right)\]
By Pythagoras theorem we know that, \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\]
In the Right \[\Delta ABE\], by applying the Pythagoras theorem, we have
\[A{B^2} = A{E^2} + B{E^2}.................................................\left( 2 \right)\]
And in Right \[\Delta ACE\], by applying Pythagoras theorem, we have
\[A{C^2} = A{E^2} + C{E^2}..............................................\left( 3 \right)\]
Adding \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = A{E^2} + B{E^2} + A{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{E^2} + B{E^2} + C{E^2}......................................................\left( 4 \right) \\
\]
In Right \[\Delta AED\], by applying Pythagoras theorem, we have
\[
A{D^2} = A{E^2} + E{D^2} \\
A{E^2} = A{D^2} - E{D^2}...................................................\left( 5 \right) \\
\]
Substituting equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2\left( {A{D^2} - E{D^2}} \right) + B{E^2} + C{E^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{E^2} + C{E^2} \\
\]
Now, writing \[BE = BD - ED\] and \[CE = CD + ED\] from the figure, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + {\left( {BD - ED} \right)^2} + {\left( {CD + ED} \right)^2} \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} - 2E{D^2} + B{D^2} - 2\left( {BD} \right)\left( {ED} \right) + E{D^2} + C{D^2} + 2\left( {CD} \right)\left( {ED} \right) + E{D^2} \\
\]
Grouping the common terms, we have
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2E{D^2} - 2E{D^2} + 2ED\left( {CD - BD} \right) \\
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + C{D^2} + 2ED\left( {CD - BD} \right) \\
\]
But, from equation \[\left( 1 \right)\] i.e., \[CD = BD\], we get
\[
\Rightarrow A{B^2} + A{C^2} = 2A{D^2} + B{D^2} + B{D^2} + 2ED\left( {BD - BD} \right) \\
\therefore A{B^2} + A{C^2} = 2A{D^2} + 2B{D^2} \\
\]
Hence, proved.
Note: Median of a triangle bisects its base into two equal parts in length. Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides” i.e., \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Adjacent side}}} \right)^2} + {\left( {{\text{Opposite side}}} \right)^2}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

