
In \[\Delta ABC\], \[\text{AB}=6\sqrt{3}\text{ cm}\], \[\text{AC}=12\text{ }cm\] and \[\text{BC}=6\text{ }cm\], then find the measure of \[\angle B\].
Answer
577.8k+ views
Hint: To find the measure of the angle by using the sides of the triangle, we use the method of trigonometric identities.
For this question, where both the opposite and adjacent are known the trigonometric identity formula we use:
\[\tan \left( \theta \right)=\dfrac{Opp.}{Adj.}\]
where \[Opp.\] is short for opposite or height of the triangle, \[Adj.\] is short for adjacent or base of the triangle and \[\theta \ is \\angle B\].
Complete step-by-step answer:
We place the values of the triangle in the formula of the tangent trigonometric identity and that is:
\[\angle B=\tan \left( \theta \right)=\dfrac{Opp.}{Adj.}\]
\[\tan \left( \theta \right)=\dfrac{AB}{BC}\]
Now, \[\text{AB}=6\sqrt{3}\text{ cm}\] and \[\text{BC}=6\text{ }cm\].
\[\tan \left( \theta \right)=\dfrac{6\sqrt{3}}{6}\]
\[\tan \left( \theta \right)=\sqrt{3}\]
Now, if we do inverse of the tangent value that shift $tan$ to the other side we get:
\[\angle B=\theta ={{\tan }^{-1}}\sqrt{3}\]
The angular value of \[{{\tan }^{-1}}\sqrt{3}\] is also known as \[{{90}^{\circ }}\].
Hence, the \[\angle B={{90}^{\circ }}\].
Note: Another method to find the value of \[\angle B\] is by equating the square of the sum of height and base of the triangle with the square of the hypotenuse of the triangle. If both the sum and the hypotenuse squares have equal value i.e. \[\left( A{{B}^{2}}+B{{C}^{2}} \right)=\left( A{{C}^{2}} \right)\] or their division \[\dfrac{\left( A{{B}^{2}}+B{{C}^{2}} \right)}{\left( A{{C}^{2}} \right)}\] is equal to \[1\]. Then the angle supporting the base and height is always \[{{90}^{\circ }}\] or a right angle triangle.
For this question, where both the opposite and adjacent are known the trigonometric identity formula we use:
\[\tan \left( \theta \right)=\dfrac{Opp.}{Adj.}\]
where \[Opp.\] is short for opposite or height of the triangle, \[Adj.\] is short for adjacent or base of the triangle and \[\theta \ is \\angle B\].
Complete step-by-step answer:
We place the values of the triangle in the formula of the tangent trigonometric identity and that is:
\[\angle B=\tan \left( \theta \right)=\dfrac{Opp.}{Adj.}\]
\[\tan \left( \theta \right)=\dfrac{AB}{BC}\]
Now, \[\text{AB}=6\sqrt{3}\text{ cm}\] and \[\text{BC}=6\text{ }cm\].
\[\tan \left( \theta \right)=\dfrac{6\sqrt{3}}{6}\]
\[\tan \left( \theta \right)=\sqrt{3}\]
Now, if we do inverse of the tangent value that shift $tan$ to the other side we get:
\[\angle B=\theta ={{\tan }^{-1}}\sqrt{3}\]
The angular value of \[{{\tan }^{-1}}\sqrt{3}\] is also known as \[{{90}^{\circ }}\].
Hence, the \[\angle B={{90}^{\circ }}\].
Note: Another method to find the value of \[\angle B\] is by equating the square of the sum of height and base of the triangle with the square of the hypotenuse of the triangle. If both the sum and the hypotenuse squares have equal value i.e. \[\left( A{{B}^{2}}+B{{C}^{2}} \right)=\left( A{{C}^{2}} \right)\] or their division \[\dfrac{\left( A{{B}^{2}}+B{{C}^{2}} \right)}{\left( A{{C}^{2}} \right)}\] is equal to \[1\]. Then the angle supporting the base and height is always \[{{90}^{\circ }}\] or a right angle triangle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

