
In any triangle $ABC$, prove that:
$a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
Answer
556.8k+ views
Hint: We will take the part $a\left( \cos B.\cos C+\cos A \right)$ from the given condition. Here we will substitute the value of $a$ from sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=K$. Now we will multiply and divide the equation with two and apply the known formula$2\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$. After that we will use the formula $A+B+C=\pi $ and simplify the obtained equation to get a constant value.
Complete step-by-step solution
Given that,
$a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
Taking the part $a\left( \cos B.\cos C+\cos A \right)$ separately.
From the sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=K$, the value of $a$ is $a=K\sin A$. Substituting the value of $a$ in the above equation, then we will get
$a\left( \cos B.\cos C+\cos A \right)=K\sin A\left( \cos B.\cos C+\cos A \right)$
Multiplying and dividing with $2$ in the above equation, then we will get
$\begin{align}
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\times 2\left( \cos B.\cos C+\cos A \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( 2\cos B.\cos C+2\cos A \right) \\
\end{align}$
We know that $2\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$, then
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos \left( B+C \right)+\cos \left( B-C \right)+2\cos A \right)$
We know that the sum of the angles in a triangle is $180{}^\circ $. $\Rightarrow A+B+C=180{}^\circ \Rightarrow B+C=180{}^\circ -A$
Substituting the value of $B+C$ in the value of $a\left( \cos B.\cos C+\cos A \right)$ then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos \left( 180{}^\circ -A \right)+\cos \left( B-C \right)+2\cos A \right)$
We know that $\cos \left( 180{}^\circ -\theta \right)=-\cos \theta $, then the value of $a\left( \cos B.\cos C+\cos A \right)$ is
$\begin{align}
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( -\cos A+\cos \left( B-C \right)+2\cos A \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos A+\cos \left( B-C \right) \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{2}\left( \sin A.\cos A+\sin A.\cos \left( B-C \right) \right) \\
\end{align}$
Again, multiplying and dividing with $2$, then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{2}\times \dfrac{1}{2}\left( 2\sin A.\cos A+2\sin A.\cos \left( B-C \right) \right)$
We have values $2\sin A.\cos A=\sin 2A$ and $\sin A=\sin \left( 180{}^\circ -\left( B+C \right) \right)=\sin \left( B+C \right)$, substituting these values in the above equation, then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{4}\left( \sin 2A+2\sin \left( B+C \right).\cos \left( B-C \right) \right)$
We know that $2\sin \left( B+C \right).\cos \left( B-C \right)=\sin 2B+\sin 2C$, then
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)..\left( \text{i} \right)$
Similarly, we will get
$b\left( \cos C.\cos A+\cos B \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)$
And $c\left( \cos A.\cos B+\cos C \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)$
$\therefore a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
Hence proved.
Note: We can also solve the above problem in another method. We have the sum of the angles in a triangle as $A+B+C=180{}^\circ $. Now the value of $\cos \left( B+C \right)$ is
$\cos \left( B+C \right)=\cos \left( 180{}^\circ -A \right)$
Applying the formula $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$ in the above equation, then we will get
$\begin{align}
& \cos B.\cos C-\sin B.\sin C=-\cos A \\
& \Rightarrow \cos B.\cos C+\cos A=\sin B.\sin C \\
\end{align}$
From the sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=4R$ the value of $\sin B.\sin C=\dfrac{bc}{{{\left( 4R \right)}^{2}}}$
Now the value of $a\left( \cos B.\cos C+\cos A \right)$ is given by
$\begin{align}
& a\left( \cos B.\cos C+\cos A \right)=a\sin B.\sin C \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}} \\
\end{align}$
Similarly, we will have the values of $b\left( \cos C.\cos A+\cos B \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}}$ and $c\left( \cos A.\cos B+\cos C \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}}$
$\therefore a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
From both the methods we got the same result.
Complete step-by-step solution
Given that,
$a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
Taking the part $a\left( \cos B.\cos C+\cos A \right)$ separately.
From the sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=K$, the value of $a$ is $a=K\sin A$. Substituting the value of $a$ in the above equation, then we will get
$a\left( \cos B.\cos C+\cos A \right)=K\sin A\left( \cos B.\cos C+\cos A \right)$
Multiplying and dividing with $2$ in the above equation, then we will get
$\begin{align}
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\times 2\left( \cos B.\cos C+\cos A \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( 2\cos B.\cos C+2\cos A \right) \\
\end{align}$
We know that $2\cos A.\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$, then
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos \left( B+C \right)+\cos \left( B-C \right)+2\cos A \right)$
We know that the sum of the angles in a triangle is $180{}^\circ $. $\Rightarrow A+B+C=180{}^\circ \Rightarrow B+C=180{}^\circ -A$
Substituting the value of $B+C$ in the value of $a\left( \cos B.\cos C+\cos A \right)$ then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos \left( 180{}^\circ -A \right)+\cos \left( B-C \right)+2\cos A \right)$
We know that $\cos \left( 180{}^\circ -\theta \right)=-\cos \theta $, then the value of $a\left( \cos B.\cos C+\cos A \right)$ is
$\begin{align}
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( -\cos A+\cos \left( B-C \right)+2\cos A \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K\sin A}{2}\left( \cos A+\cos \left( B-C \right) \right) \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{2}\left( \sin A.\cos A+\sin A.\cos \left( B-C \right) \right) \\
\end{align}$
Again, multiplying and dividing with $2$, then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{2}\times \dfrac{1}{2}\left( 2\sin A.\cos A+2\sin A.\cos \left( B-C \right) \right)$
We have values $2\sin A.\cos A=\sin 2A$ and $\sin A=\sin \left( 180{}^\circ -\left( B+C \right) \right)=\sin \left( B+C \right)$, substituting these values in the above equation, then we will get
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{4}\left( \sin 2A+2\sin \left( B+C \right).\cos \left( B-C \right) \right)$
We know that $2\sin \left( B+C \right).\cos \left( B-C \right)=\sin 2B+\sin 2C$, then
$\Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)..\left( \text{i} \right)$
Similarly, we will get
$b\left( \cos C.\cos A+\cos B \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)$
And $c\left( \cos A.\cos B+\cos C \right)=\dfrac{K}{4}\left( \sin 2A+\sin 2B+\sin 2C \right)$
$\therefore a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
Hence proved.
Note: We can also solve the above problem in another method. We have the sum of the angles in a triangle as $A+B+C=180{}^\circ $. Now the value of $\cos \left( B+C \right)$ is
$\cos \left( B+C \right)=\cos \left( 180{}^\circ -A \right)$
Applying the formula $\cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B$ in the above equation, then we will get
$\begin{align}
& \cos B.\cos C-\sin B.\sin C=-\cos A \\
& \Rightarrow \cos B.\cos C+\cos A=\sin B.\sin C \\
\end{align}$
From the sine rule $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=4R$ the value of $\sin B.\sin C=\dfrac{bc}{{{\left( 4R \right)}^{2}}}$
Now the value of $a\left( \cos B.\cos C+\cos A \right)$ is given by
$\begin{align}
& a\left( \cos B.\cos C+\cos A \right)=a\sin B.\sin C \\
& \Rightarrow a\left( \cos B.\cos C+\cos A \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}} \\
\end{align}$
Similarly, we will have the values of $b\left( \cos C.\cos A+\cos B \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}}$ and $c\left( \cos A.\cos B+\cos C \right)=\dfrac{abc}{{{\left( 4R \right)}^{2}}}$
$\therefore a\left( \cos B.\cos C+\cos A \right)=b\left( \cos C.\cos A+\cos B \right)=c\left( \cos A.\cos B+\cos C \right)$
From both the methods we got the same result.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

