
In any $\Delta ABC$, prove the following:
$\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{a\sec A+b\sec B}{\tan A+\tan B}$.
Answer
561k+ views
Hint: We use the properties of triangles involving the values of sides, angles and the circum-radius R of $\Delta ABC$. We have to show that the three expressions of trigo are the same. We find their individual value using the properties. All of them are equal to 2R.
Complete step by step answer:
To prove the given equation, we are going to use some properties of triangles involving trigonometric ratios of the angles and the sides.
For $\Delta ABC$, the opposite sides of the angles $\angle A,\angle B,\angle C$ are $a,b,c$ respectively.
So, we have the identities $\sec A=\dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}$. Similarly, we have $\sec B=\dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}$ and $\sec C=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}$.
We also have $\tan A=\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)},\tan B=\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)},\tan C=\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}$.
Here R defines the circum-radius of $\Delta ABC$.
Now we place the values in the equations.
For $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}$, we get $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{b\left( \dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)+c\left( \dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}{\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}+\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}}$.
We solve to get $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{2abc\left( \dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}+\dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}+\dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}=2R$.
For $\dfrac{c\sec C+a\sec A}{\tan C+\tan A}$, we get $\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{c\left( \dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)+a\left( \dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}{\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}+\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}}$.
We solve to get \[\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{2abc\left( \dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}+\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}+\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}=2R\].
For $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}$, we get $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=\dfrac{a\left( \dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)+b\left( \dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}{\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}+\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}}$.
We solve to get $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=\dfrac{2abc\left( \dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}=2R$.
So, $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=2R$. Thus proved.
Note: In the final step of every solution finding we eliminated terms like $a,b,c$ and $\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}$. That’s possible only because all the values of the expressions are positive. Otherwise it wouldn’t have been possible. The formulas of $\sec \theta $ are coming from the inverse theorem of $\cos \theta $. For example: $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$. We took both side inverse to get $\dfrac{1}{\cos A}=\dfrac{1}{\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\Rightarrow \sec A=\dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}$. Same goes for other angles too.
Complete step by step answer:
To prove the given equation, we are going to use some properties of triangles involving trigonometric ratios of the angles and the sides.
For $\Delta ABC$, the opposite sides of the angles $\angle A,\angle B,\angle C$ are $a,b,c$ respectively.
So, we have the identities $\sec A=\dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}$. Similarly, we have $\sec B=\dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}$ and $\sec C=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}$.
We also have $\tan A=\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)},\tan B=\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)},\tan C=\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}$.
Here R defines the circum-radius of $\Delta ABC$.
Now we place the values in the equations.
For $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}$, we get $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{b\left( \dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)+c\left( \dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}{\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}+\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}}$.
We solve to get $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{2abc\left( \dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}+\dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}+\dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)}=2R$.
For $\dfrac{c\sec C+a\sec A}{\tan C+\tan A}$, we get $\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{c\left( \dfrac{2ab}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}} \right)+a\left( \dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}{\dfrac{abc}{R\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}+\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}}$.
We solve to get \[\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{2abc\left( \dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}+\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}+\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)}=2R\].
For $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}$, we get $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=\dfrac{a\left( \dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}} \right)+b\left( \dfrac{2ac}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}{\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}+\dfrac{abc}{R\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}}$.
We solve to get $\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=\dfrac{2abc\left( \dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}{\dfrac{abc}{R}\left( \dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}} \right)}=2R$.
So, $\dfrac{b\sec B+c\sec C}{\tan B+\tan C}=\dfrac{c\sec C+a\sec A}{\tan C+\tan A}=\dfrac{a\sec A+b\sec B}{\tan A+\tan B}=2R$. Thus proved.
Note: In the final step of every solution finding we eliminated terms like $a,b,c$ and $\dfrac{1}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}+\dfrac{1}{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}$. That’s possible only because all the values of the expressions are positive. Otherwise it wouldn’t have been possible. The formulas of $\sec \theta $ are coming from the inverse theorem of $\cos \theta $. For example: $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$. We took both side inverse to get $\dfrac{1}{\cos A}=\dfrac{1}{\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\Rightarrow \sec A=\dfrac{2bc}{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}$. Same goes for other angles too.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

What are luminous and Non luminous objects class 10 physics CBSE

A Paragraph on Pollution in about 100-150 Words

