
In any \[\Delta ABC\], prove that
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\tan A=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\tan B=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\tan C\]
Answer
611.7k+ views
Hint: For the above question, we will use the sine rule and cosine rule of the triangle and we know that the tangent of any angle is the ratio of the sine to the cosine of that angle. So, we will substitute the value of sine and cosine from the rule to the expression and we will get all the expressions in a constant term.
Complete step by step answer:
We have been given to prove
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\tan A=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\tan B=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\tan C\]
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}\]
We know that the sine rule is as follows:
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
Let the ratio is equal to ‘k’, we get,
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k\]
\[\Rightarrow \sin A=ak,\text{ }\sin B=bk\text{ and }\sin C=ck\]
Let us take the expression as follows:
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}....\left( i \right)\]
Also, we have a cosine rule as follows:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos B=\dfrac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Substituting the values of sin A and cos A in the expression (i), we get,
\[\Rightarrow \left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{ka\times 2bc}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}\]
\[\Rightarrow \left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=2\left( abc \right)k\]
Similarly, substituting the values of sin B and cos B in the other expression, we get,
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{kb\times 2ac}{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}\]
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=2\left( abc \right)k\]
Again, substituting the values of sin C and cos C in the other expression, we get,
\[\Rightarrow \left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{kc\times 2ab}{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}\]
\[\Rightarrow \left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}=2\left( abc \right)k\]
Since we get all the expression as equal to 2(abc)k, hence we have proved that
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\tan A=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\tan B=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\tan C\]
Note: We can easily solve the above question if we know the formula of \[\tan A=\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}\] where R is the circumradius of \[\Delta ABC\] and remember the Basic formulas of trigonometric.
Complete step by step answer:
We have been given to prove
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\tan A=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\tan B=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\tan C\]
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}\]
We know that the sine rule is as follows:
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}\]
Let the ratio is equal to ‘k’, we get,
\[\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k\]
\[\Rightarrow \sin A=ak,\text{ }\sin B=bk\text{ and }\sin C=ck\]
Let us take the expression as follows:
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}....\left( i \right)\]
Also, we have a cosine rule as follows:
\[\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}\]
\[\cos B=\dfrac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}\]
\[\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}\]
Substituting the values of sin A and cos A in the expression (i), we get,
\[\Rightarrow \left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{ka\times 2bc}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}\]
\[\Rightarrow \left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\dfrac{\sin A}{\cos A}=2\left( abc \right)k\]
Similarly, substituting the values of sin B and cos B in the other expression, we get,
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{kb\times 2ac}{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)}\]
\[\Rightarrow \left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\dfrac{\sin B}{\cos B}=2\left( abc \right)k\]
Again, substituting the values of sin C and cos C in the other expression, we get,
\[\Rightarrow \left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{kc\times 2ab}{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}\]
\[\Rightarrow \left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\dfrac{\sin C}{\cos C}=2\left( abc \right)k\]
Since we get all the expression as equal to 2(abc)k, hence we have proved that
\[\left( {{c}^{2}}-{{a}^{2}}+{{b}^{2}} \right)\tan A=\left( {{a}^{2}}-{{b}^{2}}+{{c}^{2}} \right)\tan B=\left( {{b}^{2}}-{{c}^{2}}+{{a}^{2}} \right)\tan C\]
Note: We can easily solve the above question if we know the formula of \[\tan A=\dfrac{abc}{R\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)}\] where R is the circumradius of \[\Delta ABC\] and remember the Basic formulas of trigonometric.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

