
In any $\Delta ABC,$ prove that:
$\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A+\dfrac{\left( {{c}^{2}}-{{a}^{2}} \right)}{{{b}^{2}}}\sin 2B+\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{{{c}^{2}}}\sin 2C=0$.
Answer
607.8k+ views
Hint: Use the formula of properties of triangle given by, $a=2R\sin A,b=2R\sin B\text{ and }c\text{=}2R\sin C$, where a, b and c are the lengths of the sides of the triangle opposite to vertex A, B and C respectively and ‘$R$’ is the circumradius of the circumcircle of the triangle. A, B and C also represent the angles of the triangle. Cancel the common terms and simplify the expression to prove the result.
Complete step-by-step answer:
We have been provided with the expression,
$\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A+\dfrac{\left( {{c}^{2}}-{{a}^{2}} \right)}{{{b}^{2}}}\sin 2B+\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{{{c}^{2}}}\sin 2C$
We need to prove that the value of this expression is zero.
Therefore,
$LHS=\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A+\dfrac{\left( {{c}^{2}}-{{a}^{2}} \right)}{{{b}^{2}}}\sin 2B+\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{{{c}^{2}}}\sin 2C$
Applying the formula of relation between side and the angle of a triangle, we get,
$a=2R\sin A,b=2R\sin B\text{ and }c=2R\sin C$. Therefore,
$\begin{align}
& LHS=\dfrac{{{(2R\sin B)}^{2}}-{{(2R\sin C)}^{2}}}{{{(2R\sin A)}^{2}}}\times \sin 2A+\dfrac{{{(2R\sin C)}^{2}}-{{(2R\sin A)}^{2}}}{{{(2R\sin B)}^{2}}}\times \sin 2B \\
& \text{ }+\dfrac{{{(2R\sin A)}^{2}}-{{(2R\sin B)}^{2}}}{{{(2R\sin C)}^{2}}}\times \sin 2C \\
& LHS=\dfrac{4{{R}^{2}}{{\sin }^{2}}B-4{{R}^{2}}{{\sin }^{2}}C}{4{{R}^{2}}{{\sin }^{2}}A}\times \sin 2A+\dfrac{4{{R}^{2}}{{\sin }^{2}}C-4{{R}^{2}}{{\sin }^{2}}A}{4{{R}^{2}}{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{4{{R}^{2}}{{\sin }^{2}}A-4{{R}^{2}}{{\sin }^{2}}B}{4{{R}^{2}}{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Taking $4{{R}^{2}}$ common and cancelling from each term, we get,
$LHS=\dfrac{{{\sin }^{2}}B-{{\sin }^{2}}C}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{{{\sin }^{2}}C-{{\sin }^{2}}A}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\sin }^{2}}C}\times \sin 2C$
Using the algebraic identity: ${{a}^{2}}-{{b}^{2}}=(a+b)\times (a-b)$, we get,
$\begin{align}
& L.H.S=\dfrac{(\sin B-\sin C)(\sin B+\sin C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{(\sin C-\sin A)(\sin C+\sin A)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{(\sin A-\sin B)(\sin A+\sin B)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Now, applying the formulas,
$\begin{align}
& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right), \\
& \sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right) \\
\end{align}$
We have,
$\begin{align}
& L.H.S=\dfrac{2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\times 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{{{\sin }^{2}}A}\times \sin 2A \\
& \text{ }+\dfrac{2\sin \left( \dfrac{C-A}{2} \right)\cos \left( \dfrac{C+A}{2} \right)\times 2\sin \left( \dfrac{C+A}{2} \right)\cos \left( \dfrac{C-A}{2} \right)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{2\sin \left( \dfrac{A-C}{2} \right)\cos \left( \dfrac{A+C}{2} \right)\times 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Using the formula, $2\sin a\cos a=\sin 2a$, we get,
$L.H.S=\dfrac{\sin (B+C)\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{\sin (C-A)\sin (C+A)}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{\sin (A+B)\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C$
Now, we know that, in a $\Delta ABC,$$\angle A+\angle B+\angle C={{180}^{\circ }}$, therefore,
$\begin{align}
& B+C={{180}^{\circ }}-A \\
& A+C={{180}^{\circ }}-B \\
& A+B={{180}^{\circ }}-C \\
\end{align}$
Using the above results, we get,
\[\begin{align}
& LHS=\dfrac{\sin ({{180}^{\circ }}-A)\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A \\
& \text{ }+\dfrac{\sin ({{180}^{\circ }}-B)\sin (C-A)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{\sin ({{180}^{\circ }}-C)\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}\]
Using the conversion: $\sin ({{180}^{\circ }}-\theta )=\sin \theta $, we have,
\[L.H.S=\dfrac{\sin A\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{\sin B\sin (C-A)}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{\sin C\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C\]
Again using, $\sin 2a=2\sin a\cos a$, we get,
\[\] \[\begin{align}
& LHS=\dfrac{\sin A\sin (B-C)}{{{\sin }^{2}}A}\times 2\sin A\cos A+\dfrac{\sin B\sin (C-A)}{{{\sin }^{2}}B}\times 2\sin B\cos B+\dfrac{\sin C\sin (A-B)}{{{\sin }^{2}}C}\times 2\sin C\cos C \\
& LHS=\dfrac{2{{\sin }^{2}}A\cos A\sin (B-C)}{{{\sin }^{2}}A}+\dfrac{2{{\sin }^{2}}B\cos B\sin (C-A)}{{{\sin }^{2}}B}+\dfrac{2{{\sin }^{2}}C\cos C\sin (A-B)}{{{\sin }^{2}}C} \\
\end{align}\]
Now, cancelling the common terms we get,
\[L.H.S=2\left( \cos A\sin (B-C)+\cos B\sin (C-A)+\cos C\sin (A-B) \right)\]
Using the expansion formula: $\sin (a-b)=\sin a\cos b-\cos a\sin b$, we get,
\[LHS=2\left( \begin{align}
& \cos A\times \left( \sin B\cos C-\cos B\sin C \right) \\
& +\cos B\times \left( \sin C\cos A-\cos C\sin A \right) \\
& +\cos C\times \left( \sin A\cos B-\cos A\sin B \right) \\
\end{align} \right)\]
\[LHS=2\left( \begin{align}
& \cos A\sin B\cos C \\
& -\cos A\cos B\sin C \\
& +\cos B\sin C\cos A \\
& -\cos B\cos C\sin A \\
& +\cos C\sin A\cos B \\
& -\cos C\cos A\sin B \\
\end{align} \right)\]
\[LHS=2\left( \begin{align}
& (\cos A\sin B\cos C-\cos A\sin B\cos C) \\
& +(\cos A\cos B\sin C-\cos A\cos B\sin C) \\
& +(\cos B\cos C\sin A-\cos B\cos C\sin A) \\
\end{align} \right)\]
LHS = 0 = RHS
Hence proved
Note: There can be an alternate method to prove the above result. We can assign any particular value to the angle A, B and C and then substitute the value of the sine of the assumed angle according to the expression and then simplify the expression. But this alternate method is recommended when we have been provided with different options and we have to find the value of the expression.
Complete step-by-step answer:
We have been provided with the expression,
$\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A+\dfrac{\left( {{c}^{2}}-{{a}^{2}} \right)}{{{b}^{2}}}\sin 2B+\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{{{c}^{2}}}\sin 2C$
We need to prove that the value of this expression is zero.
Therefore,
$LHS=\dfrac{\left( {{b}^{2}}-{{c}^{2}} \right)}{{{a}^{2}}}\sin 2A+\dfrac{\left( {{c}^{2}}-{{a}^{2}} \right)}{{{b}^{2}}}\sin 2B+\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{{{c}^{2}}}\sin 2C$
Applying the formula of relation between side and the angle of a triangle, we get,
$a=2R\sin A,b=2R\sin B\text{ and }c=2R\sin C$. Therefore,
$\begin{align}
& LHS=\dfrac{{{(2R\sin B)}^{2}}-{{(2R\sin C)}^{2}}}{{{(2R\sin A)}^{2}}}\times \sin 2A+\dfrac{{{(2R\sin C)}^{2}}-{{(2R\sin A)}^{2}}}{{{(2R\sin B)}^{2}}}\times \sin 2B \\
& \text{ }+\dfrac{{{(2R\sin A)}^{2}}-{{(2R\sin B)}^{2}}}{{{(2R\sin C)}^{2}}}\times \sin 2C \\
& LHS=\dfrac{4{{R}^{2}}{{\sin }^{2}}B-4{{R}^{2}}{{\sin }^{2}}C}{4{{R}^{2}}{{\sin }^{2}}A}\times \sin 2A+\dfrac{4{{R}^{2}}{{\sin }^{2}}C-4{{R}^{2}}{{\sin }^{2}}A}{4{{R}^{2}}{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{4{{R}^{2}}{{\sin }^{2}}A-4{{R}^{2}}{{\sin }^{2}}B}{4{{R}^{2}}{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Taking $4{{R}^{2}}$ common and cancelling from each term, we get,
$LHS=\dfrac{{{\sin }^{2}}B-{{\sin }^{2}}C}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{{{\sin }^{2}}C-{{\sin }^{2}}A}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{{{\sin }^{2}}A-{{\sin }^{2}}B}{{{\sin }^{2}}C}\times \sin 2C$
Using the algebraic identity: ${{a}^{2}}-{{b}^{2}}=(a+b)\times (a-b)$, we get,
$\begin{align}
& L.H.S=\dfrac{(\sin B-\sin C)(\sin B+\sin C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{(\sin C-\sin A)(\sin C+\sin A)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{(\sin A-\sin B)(\sin A+\sin B)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Now, applying the formulas,
$\begin{align}
& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right), \\
& \sin a-\sin b=2\sin \left( \dfrac{a-b}{2} \right)\cos \left( \dfrac{a+b}{2} \right) \\
\end{align}$
We have,
$\begin{align}
& L.H.S=\dfrac{2\sin \left( \dfrac{B-C}{2} \right)\cos \left( \dfrac{B+C}{2} \right)\times 2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{{{\sin }^{2}}A}\times \sin 2A \\
& \text{ }+\dfrac{2\sin \left( \dfrac{C-A}{2} \right)\cos \left( \dfrac{C+A}{2} \right)\times 2\sin \left( \dfrac{C+A}{2} \right)\cos \left( \dfrac{C-A}{2} \right)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{2\sin \left( \dfrac{A-C}{2} \right)\cos \left( \dfrac{A+C}{2} \right)\times 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}$
Using the formula, $2\sin a\cos a=\sin 2a$, we get,
$L.H.S=\dfrac{\sin (B+C)\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{\sin (C-A)\sin (C+A)}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{\sin (A+B)\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C$
Now, we know that, in a $\Delta ABC,$$\angle A+\angle B+\angle C={{180}^{\circ }}$, therefore,
$\begin{align}
& B+C={{180}^{\circ }}-A \\
& A+C={{180}^{\circ }}-B \\
& A+B={{180}^{\circ }}-C \\
\end{align}$
Using the above results, we get,
\[\begin{align}
& LHS=\dfrac{\sin ({{180}^{\circ }}-A)\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A \\
& \text{ }+\dfrac{\sin ({{180}^{\circ }}-B)\sin (C-A)}{{{\sin }^{2}}B}\times \sin 2B \\
& \text{ }+\dfrac{\sin ({{180}^{\circ }}-C)\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C \\
\end{align}\]
Using the conversion: $\sin ({{180}^{\circ }}-\theta )=\sin \theta $, we have,
\[L.H.S=\dfrac{\sin A\sin (B-C)}{{{\sin }^{2}}A}\times \sin 2A+\dfrac{\sin B\sin (C-A)}{{{\sin }^{2}}B}\times \sin 2B+\dfrac{\sin C\sin (A-B)}{{{\sin }^{2}}C}\times \sin 2C\]
Again using, $\sin 2a=2\sin a\cos a$, we get,
\[\] \[\begin{align}
& LHS=\dfrac{\sin A\sin (B-C)}{{{\sin }^{2}}A}\times 2\sin A\cos A+\dfrac{\sin B\sin (C-A)}{{{\sin }^{2}}B}\times 2\sin B\cos B+\dfrac{\sin C\sin (A-B)}{{{\sin }^{2}}C}\times 2\sin C\cos C \\
& LHS=\dfrac{2{{\sin }^{2}}A\cos A\sin (B-C)}{{{\sin }^{2}}A}+\dfrac{2{{\sin }^{2}}B\cos B\sin (C-A)}{{{\sin }^{2}}B}+\dfrac{2{{\sin }^{2}}C\cos C\sin (A-B)}{{{\sin }^{2}}C} \\
\end{align}\]
Now, cancelling the common terms we get,
\[L.H.S=2\left( \cos A\sin (B-C)+\cos B\sin (C-A)+\cos C\sin (A-B) \right)\]
Using the expansion formula: $\sin (a-b)=\sin a\cos b-\cos a\sin b$, we get,
\[LHS=2\left( \begin{align}
& \cos A\times \left( \sin B\cos C-\cos B\sin C \right) \\
& +\cos B\times \left( \sin C\cos A-\cos C\sin A \right) \\
& +\cos C\times \left( \sin A\cos B-\cos A\sin B \right) \\
\end{align} \right)\]
\[LHS=2\left( \begin{align}
& \cos A\sin B\cos C \\
& -\cos A\cos B\sin C \\
& +\cos B\sin C\cos A \\
& -\cos B\cos C\sin A \\
& +\cos C\sin A\cos B \\
& -\cos C\cos A\sin B \\
\end{align} \right)\]
\[LHS=2\left( \begin{align}
& (\cos A\sin B\cos C-\cos A\sin B\cos C) \\
& +(\cos A\cos B\sin C-\cos A\cos B\sin C) \\
& +(\cos B\cos C\sin A-\cos B\cos C\sin A) \\
\end{align} \right)\]
LHS = 0 = RHS
Hence proved
Note: There can be an alternate method to prove the above result. We can assign any particular value to the angle A, B and C and then substitute the value of the sine of the assumed angle according to the expression and then simplify the expression. But this alternate method is recommended when we have been provided with different options and we have to find the value of the expression.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

