
In any \[\Delta ABC\], prove that
\[\dfrac{\left( b+c \right)}{a}.\cos \dfrac{\left( B+C \right)}{2}=\cos \dfrac{\left( B-C \right)}{2}\]
Answer
611.7k+ views
Hint: In the above question, we will take the left-hand side of the given expression which we have to prove. We will use the sine rule of the triangle and the formula of sin B + sin C in the product form and we will get the required expression which we have to prove. The formula of (sin B + sin C) in the product form is given below.
\[\sin B+\sin C=2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}\]
Complete step by step answer:
We have been given to prove
\[\dfrac{\left( b+c \right)}{a}\cos \dfrac{\left( B+C \right)}{2}=\cos \dfrac{\left( B-C \right)}{2}\]
We know that the sine rule of the triangle is as follows:
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\]
Let, the ratio be equal to ‘k’.
\[\Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k\]
\[\Rightarrow a=k\sin A,\text{ }b=k\sin B,\text{ }c=k\sin C\]
Now, taking the left-hand side of the given expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{B+C}{2}\]
Substituting the values of a, b and c from the sine rule to the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{k\sin A+k\sin C}{k\sin A}.\cos \dfrac{\left( B+C \right)}{2}\]
On simplification, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{\sin B+\sin C}{\sin A}.\cos \dfrac{B+C}{2}\]
By using the formula of (sin B + sin C), in the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}}{\sin A}.\cos \dfrac{B+C}{2}\]
Also, we know that the half-angle formula is \[\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\].
So substituting the values of sin A in product form, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}.\cos \dfrac{\left( B+C \right)}{2}\]
We know that in any triangle, the sum of all angles is equal to \[\pi \].
\[\Rightarrow A+B+C=\pi \]
\[\Rightarrow \dfrac{B+C}{2}=\dfrac{\pi }{2}-\dfrac{A}{2}\]
Substituting the values of \[\left( \dfrac{B+C}{2} \right)\] in the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)\cos \dfrac{\left( B-C \right)}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}.\cos \dfrac{\left( B+C \right)}{2}\]
On further simplification, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\cos \dfrac{A}{2}\cos \dfrac{B-C}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\sin \dfrac{A}{2}\]
\[\Rightarrow \dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\cos \dfrac{\left( B-C \right)}{2}\]
Hence, it is proved.
Note: We can also use the half-angle formula of \[\sin \left( B+C \right)=2\sin \dfrac{B+C}{2}.\cos \dfrac{B+C}{2}\] despite using the half-angle formula of sin A, we will get the same result. Also, we can prove the above expression by taking right-hand side terms of equality.
\[\sin B+\sin C=2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}\]
Complete step by step answer:
We have been given to prove
\[\dfrac{\left( b+c \right)}{a}\cos \dfrac{\left( B+C \right)}{2}=\cos \dfrac{\left( B-C \right)}{2}\]
We know that the sine rule of the triangle is as follows:
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\]
Let, the ratio be equal to ‘k’.
\[\Rightarrow \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k\]
\[\Rightarrow a=k\sin A,\text{ }b=k\sin B,\text{ }c=k\sin C\]
Now, taking the left-hand side of the given expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{B+C}{2}\]
Substituting the values of a, b and c from the sine rule to the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{k\sin A+k\sin C}{k\sin A}.\cos \dfrac{\left( B+C \right)}{2}\]
On simplification, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{\sin B+\sin C}{\sin A}.\cos \dfrac{B+C}{2}\]
By using the formula of (sin B + sin C), in the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}}{\sin A}.\cos \dfrac{B+C}{2}\]
Also, we know that the half-angle formula is \[\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\].
So substituting the values of sin A in product form, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \dfrac{B+C}{2}\cos \dfrac{B-C}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}.\cos \dfrac{\left( B+C \right)}{2}\]
We know that in any triangle, the sum of all angles is equal to \[\pi \].
\[\Rightarrow A+B+C=\pi \]
\[\Rightarrow \dfrac{B+C}{2}=\dfrac{\pi }{2}-\dfrac{A}{2}\]
Substituting the values of \[\left( \dfrac{B+C}{2} \right)\] in the above expression, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\sin \left( \dfrac{\pi }{2}-\dfrac{A}{2} \right)\cos \dfrac{\left( B-C \right)}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}.\cos \dfrac{\left( B+C \right)}{2}\]
On further simplification, we get,
\[\dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\dfrac{2\cos \dfrac{A}{2}\cos \dfrac{B-C}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\sin \dfrac{A}{2}\]
\[\Rightarrow \dfrac{b+c}{a}\cos \dfrac{\left( B+C \right)}{2}=\cos \dfrac{\left( B-C \right)}{2}\]
Hence, it is proved.
Note: We can also use the half-angle formula of \[\sin \left( B+C \right)=2\sin \dfrac{B+C}{2}.\cos \dfrac{B+C}{2}\] despite using the half-angle formula of sin A, we will get the same result. Also, we can prove the above expression by taking right-hand side terms of equality.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

