
In any $\Delta ABC$ , prove that
${{a}^{3}}\sin \left( B-C \right)+{{b}^{3}}\sin \left( C-A \right)+{{c}^{3}}\sin \left( A-B \right)=0$
Answer
614.4k+ views
Hint: Try to simplify the left-hand side of the equation by applying the sine rule followed by the use of the identity: $\sin \left( A+B \right)\sin \left( A-B \right)={{\sin }^{2}}A-{{\sin }^{2}}B$ .
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now let’s start with the simplification of the left-hand side of the equation given in the question.
Now we know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
${{a}^{3}}\sin \left( B-C \right)+{{b}^{3}}\sin \left( C-A \right)+{{c}^{3}}\sin \left( A-B \right)$
${{a}^{2}}ksinA\sin \left( B-C \right)+{{b}^{2}}ksinB\sin \left( C-A \right)+{{c}^{2}}ksinC\sin \left( A-B \right)$
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A=180{}^\circ -\angle C-\angle B$
So, substituting the values in our expression. On doing so, we get
\[={{a}^{2}}ksin\left( 180{}^\circ -B-C \right)\sin \left( B-C \right)+{{b}^{2}}ksin\left( 180{}^\circ -C-A \right)\sin \left( C-A \right)+{{c}^{2}}ksin\left( 180{}^\circ -A-B \right)\sin \left( A-B \right)\]
We know $\sin \left( 180{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[={{a}^{2}}ksin\left( B+C \right)\sin \left( B-C \right)+{{b}^{2}}ksin\left( C+A \right)\sin \left( C-A \right)+{{c}^{2}}ksin\left( A+B \right)\sin \left( A-B \right)\]
Now using the identity: $\sin \left( A+B \right)\sin \left( A-B \right)={{\sin }^{2}}A-{{\sin }^{2}}B$ , we get
\[=k{{a}^{2}}\left( {{\sin }^{2}}B-{{\sin }^{2}}C \right)+k{{b}^{2}}\left( {{\sin }^{2}}C-{{\sin }^{2}}A \right)+k{{c}^{2}}\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right)\]
Now we can also interpret the sine rule as:
$\begin{align}
& a\sin B=b\sin A \\
& b\sin C=c\sin B \\
& c\sin A=a\sin C \\
\end{align}$
So, using this in our expression, we get
\[=k\left( {{a}^{2}}{{\sin }^{2}}B-{{a}^{2}}{{\sin }^{2}}C+{{b}^{2}}{{\sin }^{2}}C-{{b}^{2}}{{\sin }^{2}}A+{{c}^{2}}{{\sin }^{2}}A-{{c}^{2}}{{\sin }^{2}}B \right)\]
\[=k\left( {{b}^{2}}{{\sin }^{2}}A-{{a}^{2}}{{\sin }^{2}}C+{{c}^{2}}{{\sin }^{2}}B-{{b}^{2}}{{\sin }^{2}}A+{{a}^{2}}{{\sin }^{2}}C-{{c}^{2}}{{\sin }^{2}}B \right)\]
It is clearly seen that all the terms are cancelled. So, we get
\[=k\times 0=0\]
The left-hand side of the equation given in the question is equal to the right-hand side of the equation which is equal to zero. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now let’s start with the simplification of the left-hand side of the equation given in the question.
Now we know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
${{a}^{3}}\sin \left( B-C \right)+{{b}^{3}}\sin \left( C-A \right)+{{c}^{3}}\sin \left( A-B \right)$
${{a}^{2}}ksinA\sin \left( B-C \right)+{{b}^{2}}ksinB\sin \left( C-A \right)+{{c}^{2}}ksinC\sin \left( A-B \right)$
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A=180{}^\circ -\angle C-\angle B$
So, substituting the values in our expression. On doing so, we get
\[={{a}^{2}}ksin\left( 180{}^\circ -B-C \right)\sin \left( B-C \right)+{{b}^{2}}ksin\left( 180{}^\circ -C-A \right)\sin \left( C-A \right)+{{c}^{2}}ksin\left( 180{}^\circ -A-B \right)\sin \left( A-B \right)\]
We know $\sin \left( 180{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
\[={{a}^{2}}ksin\left( B+C \right)\sin \left( B-C \right)+{{b}^{2}}ksin\left( C+A \right)\sin \left( C-A \right)+{{c}^{2}}ksin\left( A+B \right)\sin \left( A-B \right)\]
Now using the identity: $\sin \left( A+B \right)\sin \left( A-B \right)={{\sin }^{2}}A-{{\sin }^{2}}B$ , we get
\[=k{{a}^{2}}\left( {{\sin }^{2}}B-{{\sin }^{2}}C \right)+k{{b}^{2}}\left( {{\sin }^{2}}C-{{\sin }^{2}}A \right)+k{{c}^{2}}\left( {{\sin }^{2}}A-{{\sin }^{2}}B \right)\]
Now we can also interpret the sine rule as:
$\begin{align}
& a\sin B=b\sin A \\
& b\sin C=c\sin B \\
& c\sin A=a\sin C \\
\end{align}$
So, using this in our expression, we get
\[=k\left( {{a}^{2}}{{\sin }^{2}}B-{{a}^{2}}{{\sin }^{2}}C+{{b}^{2}}{{\sin }^{2}}C-{{b}^{2}}{{\sin }^{2}}A+{{c}^{2}}{{\sin }^{2}}A-{{c}^{2}}{{\sin }^{2}}B \right)\]
\[=k\left( {{b}^{2}}{{\sin }^{2}}A-{{a}^{2}}{{\sin }^{2}}C+{{c}^{2}}{{\sin }^{2}}B-{{b}^{2}}{{\sin }^{2}}A+{{a}^{2}}{{\sin }^{2}}C-{{c}^{2}}{{\sin }^{2}}B \right)\]
It is clearly seen that all the terms are cancelled. So, we get
\[=k\times 0=0\]
The left-hand side of the equation given in the question is equal to the right-hand side of the equation which is equal to zero. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

