
In any $\Delta ABC$, prove that ${{a}^{2}}\sin \left( B-C \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\sin A$.
Answer
592.2k+ views
Hint: We will be using the concept of solution of triangles to solve the problem. We will use the sine rule to relate the sides a and c with the sine of angle A and C and similarly we will find the relation between the sides a and b then we will use these equations in the left hand side of the equation.
Complete Step-by-Step solution:
We have been given a$\Delta ABC$ and we have to prove that, ${{a}^{2}}\sin \left( B-C \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\sin A$.
So, we will first draw a $\Delta ABC$ and label its sides as a, b, c.
Now, we will take L.H.S of the question and prove it to be equal to the R.H.S.
In L.H.S we have,
${{a}^{2}}\sin \left( B-C \right)$
Now, we know that the trigonometric identity that,
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin A$
So, we have,
${{a}^{2}}\sin \left( B-C \right)={{a}^{2}}\sin B\cos C-{{a}^{2}}\cos B\sin C$
Now, we know that according to sine rule,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k$
So, we have,
$\begin{align}
& a\sin C=c\sin A..........\left( 1 \right) \\
& a\sin B=b\sin A..........\left( 2 \right) \\
\end{align}$
Now, we will use (1) and (2) in,
${{a}^{2}}\sin B\cos C-{{a}^{2}}\cos B\sin C$
So, we have,
$\begin{align}
& {{a}^{2}}\sin \left( B-C \right)=ab\sin A\cos C-ac\cos B\sin A \\
& =a\sin A\left( ab\cos C-ac\cos B \right) \\
\end{align}$
Now, we know that according to cosine rule we have,
$\begin{align}
& \cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}.........\left( 3 \right) \\
& \cos B=\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2ac}.........\left( 4 \right) \\
\end{align}$
Now, using (3) and (4) above we have,
$\begin{align}
& {{a}^{2}}\sin \left( B-C \right)=\sin A\left( ab\dfrac{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}{2ab}-ac\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2ac} \right) \\
& =\sin A\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2}-\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2} \right) \\
& =\sin A\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}-{{c}^{2}}-{{a}^{2}}+{{b}^{2}}}{2} \right) \\
\end{align}$
Now, we will further simplify the numerator,
$\begin{align}
& =\sin A\left( \dfrac{2{{b}^{2}}-2{{c}^{2}}}{2} \right) \\
& =\sin A\left( {{b}^{2}}-{{c}^{2}} \right) \\
& {{a}^{2}}\sin \left( B-C \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\sin A \\
\end{align}$
Since L.H.S = R.H.S, Hence proved.
Note: To solve these types of questions it is important to note that we have used the projection formulae of the triangle to find the relation in equation (1) and (2) as follows.
$\begin{align}
& a\sin C=c\sin A..........\left( 1 \right) \\
& a\sin B=b\sin A..........\left( 2 \right) \\
\end{align}$
also it is important to note that we have used the trigonometric identity that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin A$ to further simplify the left hand side of the equation.
Complete Step-by-Step solution:
We have been given a$\Delta ABC$ and we have to prove that, ${{a}^{2}}\sin \left( B-C \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\sin A$.
So, we will first draw a $\Delta ABC$ and label its sides as a, b, c.
Now, we will take L.H.S of the question and prove it to be equal to the R.H.S.
In L.H.S we have,
${{a}^{2}}\sin \left( B-C \right)$
Now, we know that the trigonometric identity that,
$\sin \left( A-B \right)=\sin A\cos B-\cos A\sin A$
So, we have,
${{a}^{2}}\sin \left( B-C \right)={{a}^{2}}\sin B\cos C-{{a}^{2}}\cos B\sin C$
Now, we know that according to sine rule,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k$
So, we have,
$\begin{align}
& a\sin C=c\sin A..........\left( 1 \right) \\
& a\sin B=b\sin A..........\left( 2 \right) \\
\end{align}$
Now, we will use (1) and (2) in,
${{a}^{2}}\sin B\cos C-{{a}^{2}}\cos B\sin C$
So, we have,
$\begin{align}
& {{a}^{2}}\sin \left( B-C \right)=ab\sin A\cos C-ac\cos B\sin A \\
& =a\sin A\left( ab\cos C-ac\cos B \right) \\
\end{align}$
Now, we know that according to cosine rule we have,
$\begin{align}
& \cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}.........\left( 3 \right) \\
& \cos B=\dfrac{{{c}^{2}}+{{a}^{2}}-{{b}^{2}}}{2ac}.........\left( 4 \right) \\
\end{align}$
Now, using (3) and (4) above we have,
$\begin{align}
& {{a}^{2}}\sin \left( B-C \right)=\sin A\left( ab\dfrac{\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right)}{2ab}-ac\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2ac} \right) \\
& =\sin A\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2}-\dfrac{\left( {{c}^{2}}+{{a}^{2}}-{{b}^{2}} \right)}{2} \right) \\
& =\sin A\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}-{{c}^{2}}-{{a}^{2}}+{{b}^{2}}}{2} \right) \\
\end{align}$
Now, we will further simplify the numerator,
$\begin{align}
& =\sin A\left( \dfrac{2{{b}^{2}}-2{{c}^{2}}}{2} \right) \\
& =\sin A\left( {{b}^{2}}-{{c}^{2}} \right) \\
& {{a}^{2}}\sin \left( B-C \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\sin A \\
\end{align}$
Since L.H.S = R.H.S, Hence proved.
Note: To solve these types of questions it is important to note that we have used the projection formulae of the triangle to find the relation in equation (1) and (2) as follows.
$\begin{align}
& a\sin C=c\sin A..........\left( 1 \right) \\
& a\sin B=b\sin A..........\left( 2 \right) \\
\end{align}$
also it is important to note that we have used the trigonometric identity that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin A$ to further simplify the left hand side of the equation.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

