
In an Argand diagram, the loci $arg\left( z-2i \right)=\dfrac{\pi }{6}$ and $\left| z-3 \right|=\left| z-3i \right|$ intersect at point P. Express the complex number represented by P in the form $r{{e}^{i\theta }}$ giving the exact value of $\theta $ and the value of r correct to 3 significant figures.
Answer
501k+ views
Hint: Assume $z=x+iy$ and use the formula ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$ to form a relation between x and y considering the relation $\left| z-3 \right|=\left| z-3i \right|$. Form the second relation between x and y using the formula $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$ considering the relation $arg\left( z-2i \right)=\dfrac{\pi }{6}$. Solve for the values of x and y and use the formula $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ to get the value of r. To find the value of $\theta $ using the formula $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ and check for the quadrant of the angles from the signs of values of x and y.
Complete step by step answer:
Here we have been provided with the complex number z and two relations $arg\left( z-2i \right)=\dfrac{\pi }{6}$ and $\left| z-3 \right|=\left| z-3i \right|$. We are asked to find the point of intersection of these curves and express it in the Euler’s form $r{{e}^{i\theta }}$.
Now, let us assume the complex number as $z=x+iy$. We know that modulus of a complex number is given as ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$, so considering the relation $\left| z-3 \right|=\left| z-3i \right|$ we get,
\[\begin{align}
& \Rightarrow \left| x+iy-3 \right|=\left| x+iy-3i \right| \\
& \Rightarrow \left| \left( x-3 \right)+iy \right|=\left| x+i\left( y-3 \right) \right| \\
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{y}^{2}}={{x}^{2}}+{{\left( y-3 \right)}^{2}} \\
\end{align}\]
Expanding both the sides by using the algebraic identity \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] we get,
\[\Rightarrow {{x}^{2}}+9-6x+{{y}^{2}}={{x}^{2}}+{{y}^{2}}+9-6y\]
Cancelling the like terms from both the sides we get,
\[\Rightarrow x=y\] ………. (1)
Now, consider the relation $arg\left( z-2i \right)=\dfrac{\pi }{6}$. We know that $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$, so we have,
$\begin{align}
& \Rightarrow arg\left( x+iy-2i \right)=\dfrac{\pi }{6} \\
& \Rightarrow arg\left( x+i\left( y-2 \right) \right)=\dfrac{\pi }{6} \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{y-2}{x} \right)=\dfrac{\pi }{6} \\
\end{align}$
We know that $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$ so simplifying using the cross multiplication we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{y-2}{x} \right)=\tan \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \left( \dfrac{y-2}{x} \right)=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \sqrt{3}\left( y-2 \right)=x \\
\end{align}\]
Substituting the value of y from equation (1) in the above obtained relation we get,
\[\begin{align}
& \Rightarrow \sqrt{3}\left( x-2 \right)=x \\
& \Rightarrow \left( \sqrt{3}-1 \right)x=2\sqrt{3} \\
& \Rightarrow x=\dfrac{2\sqrt{3}}{\left( \sqrt{3}-1 \right)} \\
\end{align}\]
Rationalizing the denominator by multiplying and dividing by the conjugate $\left( \sqrt{3}+1 \right)$ we get,
\[\Rightarrow x=\dfrac{2\sqrt{3}}{\left( \sqrt{3}-1 \right)}\times \dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}+1 \right)}\]
Using the algebraic identity $\left( a+b \right)\left( a-b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$ we get,
\[\begin{align}
& \Rightarrow x=\dfrac{2\sqrt{3}\left( \sqrt{3}+1 \right)}{3-1} \\
& \Rightarrow x=\dfrac{2\sqrt{3}\left( \sqrt{3}+1 \right)}{2} \\
& \Rightarrow x=3+\sqrt{3} \\
\end{align}\]
Substituting the value of x in equation (1) we get,
\[\Rightarrow y=3+\sqrt{3}\]
We know that in the Euler’s form of a complex number $z=r{{e}^{i\theta }}$ we have the relations $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$, so substituting the values of x and y we get,
$\begin{align}
& \Rightarrow r=\sqrt{{{\left( 3+\sqrt{3} \right)}^{2}}+{{\left( 3+\sqrt{3} \right)}^{2}}} \\
& \Rightarrow r=\sqrt{2\times {{\left( 3+\sqrt{3} \right)}^{2}}} \\
& \Rightarrow r=\sqrt{2}\times \left( 3+\sqrt{3} \right) \\
& \Rightarrow r=3\sqrt{2}+\sqrt{6} \\
\end{align}$
Substituting the values $\sqrt{2}=1.414$ and $\sqrt{3}=1.732$ and simplifying we get,
$\Rightarrow r=6.69$
Since both x and y are positive so the angle $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ must lie in the first quadrant, so we get,
\[\begin{align}
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{3+\sqrt{3}}{3+\sqrt{3}} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( 1 \right) \\
\end{align}\]
We know that ${{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}$ so we get,
\[\Rightarrow \theta =\dfrac{\pi }{4}\]
Hence, the point P can be written in the form $r{{e}^{i\theta }}$ as $6.69{{e}^{\left( \dfrac{\pi }{4} \right)i}}$ where r is correct to three significant figures.
Note: Remember the basic terms of complex numbers like conjugate, argument, modulus etc. We do not represent complex numbers on a real plane but there is a complex plane for their representation. You must be careful while finding the value of $\theta $ because the quadrant in which the angle lies depends on the signs of values of x and y just like a point lies in different quadrants for the different signs of x and y.
Complete step by step answer:
Here we have been provided with the complex number z and two relations $arg\left( z-2i \right)=\dfrac{\pi }{6}$ and $\left| z-3 \right|=\left| z-3i \right|$. We are asked to find the point of intersection of these curves and express it in the Euler’s form $r{{e}^{i\theta }}$.
Now, let us assume the complex number as $z=x+iy$. We know that modulus of a complex number is given as ${{\left| z \right|}^{2}}={{x}^{2}}+{{y}^{2}}$, so considering the relation $\left| z-3 \right|=\left| z-3i \right|$ we get,
\[\begin{align}
& \Rightarrow \left| x+iy-3 \right|=\left| x+iy-3i \right| \\
& \Rightarrow \left| \left( x-3 \right)+iy \right|=\left| x+i\left( y-3 \right) \right| \\
& \Rightarrow {{\left( x-3 \right)}^{2}}+{{y}^{2}}={{x}^{2}}+{{\left( y-3 \right)}^{2}} \\
\end{align}\]
Expanding both the sides by using the algebraic identity \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] we get,
\[\Rightarrow {{x}^{2}}+9-6x+{{y}^{2}}={{x}^{2}}+{{y}^{2}}+9-6y\]
Cancelling the like terms from both the sides we get,
\[\Rightarrow x=y\] ………. (1)
Now, consider the relation $arg\left( z-2i \right)=\dfrac{\pi }{6}$. We know that $\arg \left( z \right)={{\tan }^{-1}}\left( \dfrac{\operatorname{Im}\left( z \right)}{\operatorname{Re}\left( z \right)} \right)$, so we have,
$\begin{align}
& \Rightarrow arg\left( x+iy-2i \right)=\dfrac{\pi }{6} \\
& \Rightarrow arg\left( x+i\left( y-2 \right) \right)=\dfrac{\pi }{6} \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{y-2}{x} \right)=\dfrac{\pi }{6} \\
\end{align}$
We know that $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$ so simplifying using the cross multiplication we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{y-2}{x} \right)=\tan \left( \dfrac{\pi }{6} \right) \\
& \Rightarrow \left( \dfrac{y-2}{x} \right)=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow \sqrt{3}\left( y-2 \right)=x \\
\end{align}\]
Substituting the value of y from equation (1) in the above obtained relation we get,
\[\begin{align}
& \Rightarrow \sqrt{3}\left( x-2 \right)=x \\
& \Rightarrow \left( \sqrt{3}-1 \right)x=2\sqrt{3} \\
& \Rightarrow x=\dfrac{2\sqrt{3}}{\left( \sqrt{3}-1 \right)} \\
\end{align}\]
Rationalizing the denominator by multiplying and dividing by the conjugate $\left( \sqrt{3}+1 \right)$ we get,
\[\Rightarrow x=\dfrac{2\sqrt{3}}{\left( \sqrt{3}-1 \right)}\times \dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}+1 \right)}\]
Using the algebraic identity $\left( a+b \right)\left( a-b \right)=\left( {{a}^{2}}-{{b}^{2}} \right)$ we get,
\[\begin{align}
& \Rightarrow x=\dfrac{2\sqrt{3}\left( \sqrt{3}+1 \right)}{3-1} \\
& \Rightarrow x=\dfrac{2\sqrt{3}\left( \sqrt{3}+1 \right)}{2} \\
& \Rightarrow x=3+\sqrt{3} \\
\end{align}\]
Substituting the value of x in equation (1) we get,
\[\Rightarrow y=3+\sqrt{3}\]
We know that in the Euler’s form of a complex number $z=r{{e}^{i\theta }}$ we have the relations $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$, so substituting the values of x and y we get,
$\begin{align}
& \Rightarrow r=\sqrt{{{\left( 3+\sqrt{3} \right)}^{2}}+{{\left( 3+\sqrt{3} \right)}^{2}}} \\
& \Rightarrow r=\sqrt{2\times {{\left( 3+\sqrt{3} \right)}^{2}}} \\
& \Rightarrow r=\sqrt{2}\times \left( 3+\sqrt{3} \right) \\
& \Rightarrow r=3\sqrt{2}+\sqrt{6} \\
\end{align}$
Substituting the values $\sqrt{2}=1.414$ and $\sqrt{3}=1.732$ and simplifying we get,
$\Rightarrow r=6.69$
Since both x and y are positive so the angle $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$ must lie in the first quadrant, so we get,
\[\begin{align}
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{3+\sqrt{3}}{3+\sqrt{3}} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( 1 \right) \\
\end{align}\]
We know that ${{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}$ so we get,
\[\Rightarrow \theta =\dfrac{\pi }{4}\]
Hence, the point P can be written in the form $r{{e}^{i\theta }}$ as $6.69{{e}^{\left( \dfrac{\pi }{4} \right)i}}$ where r is correct to three significant figures.
Note: Remember the basic terms of complex numbers like conjugate, argument, modulus etc. We do not represent complex numbers on a real plane but there is a complex plane for their representation. You must be careful while finding the value of $\theta $ because the quadrant in which the angle lies depends on the signs of values of x and y just like a point lies in different quadrants for the different signs of x and y.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

