
In an AP:
(i) Given \[a = 5,d = 3,{a_n} = 50\], find n and \[{S_n}\].
(ii) Given \[a = 7,{a_{13}} = 35\], find d and \[{S_{13}}\].
(iii) Given \[{a_{12}} = 37,d = 3\], find a and \[{S_{12}}\].
(iv) Given \[{a_3} = 15,{S_{10}} = 125\], find d and \[{a_{10}}\].
(v) Given \[d = 5,{S_9} = 75\], find a and \[{a_9}\].
(vi) Given \[a = 2,d = 8,{S_n} = 90\], find n and \[{a_n}\].
(vii) Given \[a = 8,{a_n} = 62,{S_n} = 210\], find n and d.
(viii) Given \[{a_n} = 4,d = 2,{S_n} = - 14\], find n and a.
(ix) Given \[a = 3,n = 8,S = 192\], find d.
(x) Given \[l = 28,S = 144\], and there are a total 9 terms. Find a.
Answer
571.2k+ views
Hint: Use the formula of Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\] where, a initial term of the AP and d is the common difference of successive numbers. Calculate the value of n. We use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]. Calculate the sum of the AP \[{S_n}\].
Complete step by step answer:
Given data:
(i) \[a = 5,d = 3,{a_n} = 50\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $n$. Substitute the value of \[a = 5,d = 3,{a_n} = 50\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 50 = 5 + \left( {n - 1} \right)\left( 3 \right)$
$\Rightarrow 45 = 3n - 3$
$\Rightarrow 3n = 48$
$\Rightarrow n= 16$
Hence, the value of n is 16.
Now, we know about the formula of the sum of n terms in an Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[a = 5,n = 16,{a_n} = 50\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{16}} = \dfrac{{16}}{2}\left[ {5 + 50} \right]$
$ = 8\left[ {55} \right]$
$ = 440$
Hence, the value of \[{S_n}\] is \[440\].
(ii) \[a = 7,{a_{13}} = 35\]
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $d$. Substitute the value of \[a = 7,{a_{13}} = 35\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 35 = 7 + \left( {13 - 1} \right)d$
$\Rightarrow 28 = 12d$
$\Rightarrow d = \dfrac{{28}}{{12}}$
$\Rightarrow d = \dfrac{7}{3}$
Hence, the value of d is \[\dfrac{7}{3}\].
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where $a = 7,{a_{13}} = 35,{\rm{ and }}d = \dfrac{7}{3}$. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{13}} = \dfrac{{13}}{2}\left[ {7 + 35} \right]$
$ = 6.5\left[ {42} \right]$
$ = 273$
Hence, the value of \[{S_{13}}\] is \[273\].
(iii) \[{a_{12}} = 37,d = 3\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[{a_{12}} = 37,d = 3\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 37 = a + \left( {12 - 1} \right)\left( 3 \right)$
$\Rightarrow 37 = a + 33$
$\Rightarrow a = 4$
Hence, the value of a is 4.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[{a_{12}} = 37,d = 3,{\rm{ and }}a = 4\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{12}} = \dfrac{{12}}{2}\left[ {4 + 37} \right]$
$ = 6\left[ {41} \right]$
$ = 246$
Hence, the value of \[{S_{12}}\] is \[246\].
(iv) \[{a_3} = 15,{S_{10}} = 125\]
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
The general formula of the AP is \[a,a + d,a + 2d,a + 3d,...\]. Now, \[{a_3} = a + 2d\] and substitute the value of \[{a_3} = 15\].
$\Rightarrow 15 = a + 2d$
$\Rightarrow a = 15 - 2d$
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[{a_3} = 15,{S_{10}} = 125,{\rm{ and }}a = 15 - 2d\] in \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 125 = \dfrac{{10}}{2}\left[ {2\left( {15 - 2d} \right) + \left( {10 - 1} \right)d} \right]$
$\Rightarrow \dfrac{{125}}{5} = 30 - 4d + 9d$
$\Rightarrow 25 - 30 = 5d$
$\Rightarrow d = - 1$
Hence, the value of d is \[ - 1\].
Substitute the value \[d = - 1\] in \[a = 15 - 2d\].
$\Rightarrow a = 15 - 2\left( { - 1} \right)$
$\Rightarrow a = 17$
Hence, the value of $a$ is 17.
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[a = 17,d = - 1,{\rm{ and }}n = 10\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_{10}} = 17 + \left( {10 - 1} \right)\left( { - 1} \right)$
$ = 17 - 9$
$ = 8$
Hence, the value of \[{a_{10}}\] is 8.
(v) \[d = 5,{S_9} = 75\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[d = 5,{S_9} = 75\] in \[{S_n} = $\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 75 = \dfrac{9}{2}\left[ {2a + \left( {9 - 1} \right)5} \right]$
$\Rightarrow 75\left( {\dfrac{2}{9}} \right) = 2a + 40$
$\Rightarrow - 23.3333 = 2a$
$\Rightarrow d = - 11.6667$
Hence, the value of d is \[ - 11.6667\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_9}$. Substitute the value of \[d = 5,{S_9} = 75,{\rm{ and }} - 11.6667\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_9} = - 11.6667 + \left( {9 - 1} \right)\left( 5 \right)$
$ = - 11.6667 + 40$
$= 28.3333$
Hence, the value of \[{a_9}\] is 28.3333.
(vi) \[a = 2,d = 8,{S_n} = 90\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[a = 2,d = 8,{\rm{ and }}{S_n} = 90\] in \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 90 = \dfrac{n}{2}\left[ {2\left( 2 \right) + \left( {n - 1} \right)8} \right]$
$\Rightarrow 90 = \dfrac{n}{2}\left( {4 + 8n - 8} \right)$
$\Rightarrow 180 = - 4n + 8{n^2}$
$\Rightarrow 2{n^2} - n - 45 = 0$
On further simplification, the following is obtained:
$\Rightarrow 2{n^2} - 10n + 9n - 45 = 0$
$\Rightarrow 2n\left( {n - 5} \right) + 9\left( {n - 5} \right) = 0$
$\Rightarrow \left( {n - 5} \right)\left( {2n + 9} \right) = 0$
$\Rightarrow n = 5, - \dfrac{9}{2}$
Hence, the values of n are \[5, - \dfrac{9}{2}\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_n}$. Substitute the value of \[a = 2,d = 8,{\rm{ and }}n = 5\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_5} = 2 + \left( {5 - 1} \right)\left( 8 \right)$
$ = 2 + 32$
$= 34$
Hence, the value of \[{a_5}\] is 34.
(vii) \[a = 8,{a_n} = 62,{S_n} = 210\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[a = 8,{a_n} = 62,{\rm{ and }}{S_n} = 210\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow 210 = \dfrac{n}{2}\left[ {8 + 62} \right]$
$\Rightarrow 420 = n\left[ {70} \right]$
$\Rightarrow n = \dfrac{{420}}{{70}}$
$\Rightarrow n= 6$
Hence, the value of \[n\] is \[6\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_n}$. Substitute the value of \[a = 8,{a_n} = 62,{\rm{ and }}n = 6\] in \[\Rightarrow {a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 62 = 8 + \left( {6 - 1} \right)\left( d \right)$
$\Rightarrow 54 = 5d$
$\Rightarrow d = \dfrac{{54}}{5}$
Hence, the value of \[d\] is \[\dfrac{{54}}{5}\].
(viii) \[{a_n} = 4,d = 2,{S_n} = - 14\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[{a_n} = 4,d = 2,{\rm{ and }}{S_n} = - 14\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow - 14 = \dfrac{n}{2}\left[ {a + 4} \right]$
$\Rightarrow - 28 = n\left( {a + 4} \right)$
$\Rightarrow n = - \dfrac{{28}}{{a + 4}}$
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[{a_n} = 4,d = 2,{\rm{ and }}n = - \dfrac{{28}}{{a + 4}}\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 4 = a + \left( { - \dfrac{{28}}{{a + 4}} - 1} \right)\left( 2 \right)$
$\Rightarrow 4\left( {a + 4} \right) = a\left( {a + 4} \right) - 56 - 2a - 8$
$\Rightarrow 4a + 16 = {a^2} + 4a - 64 - 2a$
$\Rightarrow {a^2} - 2a - 80 = 0$
Further simplification, the following is obtained:
$\Rightarrow {a^2} - 10a + 8a - 80 = 0$
$\Rightarrow a\left( {a - 10} \right) + 8\left( {a - 10} \right) = 0$
$ \Rightarrow \left( {a - 10} \right)\left( {a + 8} \right) = 0$
$\Rightarrow a = 10, - 8$
Hence, the value of \[a\] is \[10{\rm{ and }} - 8\].
Now, substitute the value of \[a = 10{\rm{ and }} - 8\] in \[n = - \dfrac{{28}}{{a + 4}}\].
$\Rightarrow n = - \dfrac{{28}}{{10 + 4}}$
$\Rightarrow n = - 2$
$\Rightarrow n = - \dfrac{{28}}{{ - 8 + 4}}$
$\Rightarrow n= 7$
Here, the value of n cannot be negative. So, \[n = - 2\] is not possible.
Hence, the value of \[n\] is \[7\] and the value of a is \[ - 8\].
(ix) \[a = 3,n = 8,S = 192\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[a = 3,n = 8,{\rm{ and }}S = 192\] in \[\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 192 = \dfrac{8}{2}\left[ {2\left( 3 \right) + \left( {8 - 1} \right)d} \right]$
$\Rightarrow 192 = 24 + 28d$
$\Rightarrow 168 = 28d$
$\Rightarrow d = 6$
Hence, the value of d is 6.
(x) \[l = 28,S = 144\] and there are total 9 terms.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\]. Where, \[{a_n}\] shows the last number which can also denoted by l. that is \[{a_n} = l\]
\[\Rightarrow {S_n} = \dfrac{n}{2}\left[ {a + l} \right]\]
Now, calculate the value of ${S_n}$ where \[l = 28{\rm{ and }}S = 144\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + l} \right]\].
$\Rightarrow 144 = \dfrac{9}{2}\left[ {a + 28} \right]$
$\Rightarrow 32 = a + 28$
$\Rightarrow a = 4$
Hence, the value of a is 4.
Note:
The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is the initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Complete step by step answer:
Given data:
(i) \[a = 5,d = 3,{a_n} = 50\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $n$. Substitute the value of \[a = 5,d = 3,{a_n} = 50\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 50 = 5 + \left( {n - 1} \right)\left( 3 \right)$
$\Rightarrow 45 = 3n - 3$
$\Rightarrow 3n = 48$
$\Rightarrow n= 16$
Hence, the value of n is 16.
Now, we know about the formula of the sum of n terms in an Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[a = 5,n = 16,{a_n} = 50\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{16}} = \dfrac{{16}}{2}\left[ {5 + 50} \right]$
$ = 8\left[ {55} \right]$
$ = 440$
Hence, the value of \[{S_n}\] is \[440\].
(ii) \[a = 7,{a_{13}} = 35\]
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $d$. Substitute the value of \[a = 7,{a_{13}} = 35\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 35 = 7 + \left( {13 - 1} \right)d$
$\Rightarrow 28 = 12d$
$\Rightarrow d = \dfrac{{28}}{{12}}$
$\Rightarrow d = \dfrac{7}{3}$
Hence, the value of d is \[\dfrac{7}{3}\].
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where $a = 7,{a_{13}} = 35,{\rm{ and }}d = \dfrac{7}{3}$. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{13}} = \dfrac{{13}}{2}\left[ {7 + 35} \right]$
$ = 6.5\left[ {42} \right]$
$ = 273$
Hence, the value of \[{S_{13}}\] is \[273\].
(iii) \[{a_{12}} = 37,d = 3\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[{a_{12}} = 37,d = 3\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 37 = a + \left( {12 - 1} \right)\left( 3 \right)$
$\Rightarrow 37 = a + 33$
$\Rightarrow a = 4$
Hence, the value of a is 4.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[{a_{12}} = 37,d = 3,{\rm{ and }}a = 4\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow {S_{12}} = \dfrac{{12}}{2}\left[ {4 + 37} \right]$
$ = 6\left[ {41} \right]$
$ = 246$
Hence, the value of \[{S_{12}}\] is \[246\].
(iv) \[{a_3} = 15,{S_{10}} = 125\]
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
The general formula of the AP is \[a,a + d,a + 2d,a + 3d,...\]. Now, \[{a_3} = a + 2d\] and substitute the value of \[{a_3} = 15\].
$\Rightarrow 15 = a + 2d$
$\Rightarrow a = 15 - 2d$
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[{a_3} = 15,{S_{10}} = 125,{\rm{ and }}a = 15 - 2d\] in \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 125 = \dfrac{{10}}{2}\left[ {2\left( {15 - 2d} \right) + \left( {10 - 1} \right)d} \right]$
$\Rightarrow \dfrac{{125}}{5} = 30 - 4d + 9d$
$\Rightarrow 25 - 30 = 5d$
$\Rightarrow d = - 1$
Hence, the value of d is \[ - 1\].
Substitute the value \[d = - 1\] in \[a = 15 - 2d\].
$\Rightarrow a = 15 - 2\left( { - 1} \right)$
$\Rightarrow a = 17$
Hence, the value of $a$ is 17.
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[a = 17,d = - 1,{\rm{ and }}n = 10\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_{10}} = 17 + \left( {10 - 1} \right)\left( { - 1} \right)$
$ = 17 - 9$
$ = 8$
Hence, the value of \[{a_{10}}\] is 8.
(v) \[d = 5,{S_9} = 75\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[d = 5,{S_9} = 75\] in \[{S_n} = $\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 75 = \dfrac{9}{2}\left[ {2a + \left( {9 - 1} \right)5} \right]$
$\Rightarrow 75\left( {\dfrac{2}{9}} \right) = 2a + 40$
$\Rightarrow - 23.3333 = 2a$
$\Rightarrow d = - 11.6667$
Hence, the value of d is \[ - 11.6667\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_9}$. Substitute the value of \[d = 5,{S_9} = 75,{\rm{ and }} - 11.6667\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_9} = - 11.6667 + \left( {9 - 1} \right)\left( 5 \right)$
$ = - 11.6667 + 40$
$= 28.3333$
Hence, the value of \[{a_9}\] is 28.3333.
(vi) \[a = 2,d = 8,{S_n} = 90\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[a = 2,d = 8,{\rm{ and }}{S_n} = 90\] in \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 90 = \dfrac{n}{2}\left[ {2\left( 2 \right) + \left( {n - 1} \right)8} \right]$
$\Rightarrow 90 = \dfrac{n}{2}\left( {4 + 8n - 8} \right)$
$\Rightarrow 180 = - 4n + 8{n^2}$
$\Rightarrow 2{n^2} - n - 45 = 0$
On further simplification, the following is obtained:
$\Rightarrow 2{n^2} - 10n + 9n - 45 = 0$
$\Rightarrow 2n\left( {n - 5} \right) + 9\left( {n - 5} \right) = 0$
$\Rightarrow \left( {n - 5} \right)\left( {2n + 9} \right) = 0$
$\Rightarrow n = 5, - \dfrac{9}{2}$
Hence, the values of n are \[5, - \dfrac{9}{2}\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_n}$. Substitute the value of \[a = 2,d = 8,{\rm{ and }}n = 5\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow {a_5} = 2 + \left( {5 - 1} \right)\left( 8 \right)$
$ = 2 + 32$
$= 34$
Hence, the value of \[{a_5}\] is 34.
(vii) \[a = 8,{a_n} = 62,{S_n} = 210\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[a = 8,{a_n} = 62,{\rm{ and }}{S_n} = 210\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow 210 = \dfrac{n}{2}\left[ {8 + 62} \right]$
$\Rightarrow 420 = n\left[ {70} \right]$
$\Rightarrow n = \dfrac{{420}}{{70}}$
$\Rightarrow n= 6$
Hence, the value of \[n\] is \[6\].
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of ${a_n}$. Substitute the value of \[a = 8,{a_n} = 62,{\rm{ and }}n = 6\] in \[\Rightarrow {a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 62 = 8 + \left( {6 - 1} \right)\left( d \right)$
$\Rightarrow 54 = 5d$
$\Rightarrow d = \dfrac{{54}}{5}$
Hence, the value of \[d\] is \[\dfrac{{54}}{5}\].
(viii) \[{a_n} = 4,d = 2,{S_n} = - 14\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\].
\[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\]
Now, calculate the value of ${S_n}$ where \[{a_n} = 4,d = 2,{\rm{ and }}{S_n} = - 14\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]\].
$\Rightarrow - 14 = \dfrac{n}{2}\left[ {a + 4} \right]$
$\Rightarrow - 28 = n\left( {a + 4} \right)$
$\Rightarrow n = - \dfrac{{28}}{{a + 4}}$
Now, we know about the Arithmetic progression sequence for the nth terms is:
\[{a_n} = a + \left( {n - 1} \right)d\]
Now, calculate the value of $a$. Substitute the value of \[{a_n} = 4,d = 2,{\rm{ and }}n = - \dfrac{{28}}{{a + 4}}\] in \[{a_n} = a + \left( {n - 1} \right)d\].
$\Rightarrow 4 = a + \left( { - \dfrac{{28}}{{a + 4}} - 1} \right)\left( 2 \right)$
$\Rightarrow 4\left( {a + 4} \right) = a\left( {a + 4} \right) - 56 - 2a - 8$
$\Rightarrow 4a + 16 = {a^2} + 4a - 64 - 2a$
$\Rightarrow {a^2} - 2a - 80 = 0$
Further simplification, the following is obtained:
$\Rightarrow {a^2} - 10a + 8a - 80 = 0$
$\Rightarrow a\left( {a - 10} \right) + 8\left( {a - 10} \right) = 0$
$ \Rightarrow \left( {a - 10} \right)\left( {a + 8} \right) = 0$
$\Rightarrow a = 10, - 8$
Hence, the value of \[a\] is \[10{\rm{ and }} - 8\].
Now, substitute the value of \[a = 10{\rm{ and }} - 8\] in \[n = - \dfrac{{28}}{{a + 4}}\].
$\Rightarrow n = - \dfrac{{28}}{{10 + 4}}$
$\Rightarrow n = - 2$
$\Rightarrow n = - \dfrac{{28}}{{ - 8 + 4}}$
$\Rightarrow n= 7$
Here, the value of n cannot be negative. So, \[n = - 2\] is not possible.
Hence, the value of \[n\] is \[7\] and the value of a is \[ - 8\].
(ix) \[a = 3,n = 8,S = 192\]
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Now, calculate the value of $a{\rm{ and }}d$. Substitute the values \[a = 3,n = 8,{\rm{ and }}S = 192\] in \[\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\].
$\Rightarrow 192 = \dfrac{8}{2}\left[ {2\left( 3 \right) + \left( {8 - 1} \right)d} \right]$
$\Rightarrow 192 = 24 + 28d$
$\Rightarrow 168 = 28d$
$\Rightarrow d = 6$
Hence, the value of d is 6.
(x) \[l = 28,S = 144\] and there are total 9 terms.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
\[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\]
Simplify the above equation by substituting \[{a_n} = a + \left( {n - 1} \right)d\]. Where, \[{a_n}\] shows the last number which can also denoted by l. that is \[{a_n} = l\]
\[\Rightarrow {S_n} = \dfrac{n}{2}\left[ {a + l} \right]\]
Now, calculate the value of ${S_n}$ where \[l = 28{\rm{ and }}S = 144\]. Substitute the values in \[{S_n} = \dfrac{n}{2}\left[ {a + l} \right]\].
$\Rightarrow 144 = \dfrac{9}{2}\left[ {a + 28} \right]$
$\Rightarrow 32 = a + 28$
$\Rightarrow a = 4$
Hence, the value of a is 4.
Note:
The general equation of the Arithmetic progression is \[a,a + d,a + 2d,a + 3d,...\], where a is the initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is \[{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]\] and use the Arithmetic progression sequence for the nth terms that is \[{a_n} = a + \left( {n - 1} \right)d\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

