
In an AP, given ${a_3} = 15$, ${S_{10}} = 125$, find d and ${a_{10}}$.
Answer
599.7k+ views
Hint: In Arithmetic Progressions, we use the formula of sum of n terms i.e. ${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$. We will use this formula in this question as well. Another formula that we will use in the solution is i.e. ${a_n} = a + \left( {n - 1} \right)d$.
Complete step-by-step answer:
As we know, the sum of n terms is calculated by${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$ , we will put the value of n as 10 because the value of ${S_{10}}$ is already given to us by the question, we get-
$ \to {S_{10}} = \dfrac{{10}}{2}\left[ {a + {a_{10}}} \right]$
Substituting the value of ${S_{10}}$in the above equation, we get-
$
\to 125 = \dfrac{{10}}{2}\left[ {a + {a_{10}}} \right] \\
\\
\to 125 = 5\left[ {a + {a_{10}}} \right] \\
\\
\to 25 = a + {a_{10}} \\
$
Applying the formula ${a_n} = a + \left( {n - 1} \right)d$, in the above equation, we get-
$
\to 25 = a + a + 9d \\
\\
\to 25 = 2a + 9d \\
$
Let the equation $25 = 2a + 9d$ be equation 1-
$ \to 25 = 2a + 9d$ (equation 1)
It is given in the question that ${a_3} = 15$, so we will have-
$ \to a + 2d = 15$
Multiplying the equation 2 by 2, we get-
$ \to 2a + 4d = 30$ (equation 2)
Subtracting equation 1 from equation 2-
$ \Rightarrow - 5d = 5$
So, the value of d which we get from the above equation is $d = - 1$.
Putting the value of d into equation 1-
$
\to 25 = 2a - 9 \\
\\
\to 35 = 2a \\
\\
\to a = 17 \\
$
So, we find ${a_{10}}$ by the formula ${a_n} = a + \left( {n - 1} \right)d$, where $n = 10$, and putting the value of d found above, we get-
$
\to {a_{10}} = 17 - 9 \\
\\
\to {a_{10}} = 8 \\
$
Hence, the value of $d$ is -1 and the value of ${a_{10}}$ is 8.
Note: Remember the formula of sum of n terms i.e. ${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$ as it is used in most of the Arithmetic Progressions questions. Use the values given in the question wisely to find out the values asked by the question.
Complete step-by-step answer:
As we know, the sum of n terms is calculated by${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$ , we will put the value of n as 10 because the value of ${S_{10}}$ is already given to us by the question, we get-
$ \to {S_{10}} = \dfrac{{10}}{2}\left[ {a + {a_{10}}} \right]$
Substituting the value of ${S_{10}}$in the above equation, we get-
$
\to 125 = \dfrac{{10}}{2}\left[ {a + {a_{10}}} \right] \\
\\
\to 125 = 5\left[ {a + {a_{10}}} \right] \\
\\
\to 25 = a + {a_{10}} \\
$
Applying the formula ${a_n} = a + \left( {n - 1} \right)d$, in the above equation, we get-
$
\to 25 = a + a + 9d \\
\\
\to 25 = 2a + 9d \\
$
Let the equation $25 = 2a + 9d$ be equation 1-
$ \to 25 = 2a + 9d$ (equation 1)
It is given in the question that ${a_3} = 15$, so we will have-
$ \to a + 2d = 15$
Multiplying the equation 2 by 2, we get-
$ \to 2a + 4d = 30$ (equation 2)
Subtracting equation 1 from equation 2-
$ \Rightarrow - 5d = 5$
So, the value of d which we get from the above equation is $d = - 1$.
Putting the value of d into equation 1-
$
\to 25 = 2a - 9 \\
\\
\to 35 = 2a \\
\\
\to a = 17 \\
$
So, we find ${a_{10}}$ by the formula ${a_n} = a + \left( {n - 1} \right)d$, where $n = 10$, and putting the value of d found above, we get-
$
\to {a_{10}} = 17 - 9 \\
\\
\to {a_{10}} = 8 \\
$
Hence, the value of $d$ is -1 and the value of ${a_{10}}$ is 8.
Note: Remember the formula of sum of n terms i.e. ${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$ as it is used in most of the Arithmetic Progressions questions. Use the values given in the question wisely to find out the values asked by the question.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

