
In an activity, students were asked to make a circular rangoli, Trishu, Sidak, Mini and Kavleen made rangolis having different diameters as $\dfrac{17}{20}$ inches, $\dfrac{3}{4}$ inches, $\dfrac{5}{6}$ inches and $\dfrac{7}{10}$ inches respectively. Who among them made the smallest one?
$\begin{align}
& \left( a \right)\text{kavleen} \\
& \left( b \right)\text{Trishu} \\
& \left( c \right)\text{Mini} \\
& \left( d \right)\text{Sidak} \\
\end{align}$
Answer
598.8k+ views
Hint: To solve the question given above, we will first find out the radii of the rangolis made by Trishu, Sidak, Mini and Kavleen respectively. Then we will find the areas of their rangolis. Then, to determine which is the smallest rangoli, we will take the LCM of the denominator of the area and then we will multiply these areas by LCM. The area which will be the smallest after multiplication will be the smallest rangoli.
Complete step-by-step answer:
To determine, who has made the smallest rangoli, we will first find out the radii of each rangoli. Let the radii of rangoli made by Trishu, Sidak, Mini and Kavleen are ${{R}_{T,}}{{R}_{S}},{{R}_{M}}\text{ }and\text{ }{{R}_{K}}$ respectively. The diameter of their rangolis are ${{D}_{T}},{{D}_{S}},{{D}_{M}},\text{ }and\text{ }{{D}_{K}}$ respectively. Now, the relation between the diameter and radii of any circle is given by:
$Radius=\dfrac{Diameter}{2}$
Thus, $\begin{align}
& {{R}_{T}}=\dfrac{{{D}_{T}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{T}}=\dfrac{\left( \dfrac{17}{20} \right)inches}{2} \\
& \Rightarrow {{R}_{T}}=\dfrac{17}{40}inches.........\left( 1 \right) \\
\end{align}$
Similarly, \[\begin{align}
& {{R}_{S}}=\dfrac{{{D}_{S}}}{2} \\
& \\
\end{align}\]
$\begin{align}
& \Rightarrow {{R}_{S}}=\dfrac{\left( \dfrac{3}{4} \right)inches}{2} \\
& \Rightarrow \,{{R}_{S}}=\dfrac{3}{8}inches.......\left( 2 \right) \\
\end{align}$
Similarly,$\begin{align}
& {{R}_{M}}=\dfrac{{{D}_{M}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{M}}=\dfrac{\left( \dfrac{5}{6} \right)inches}{2} \\
& \Rightarrow {{R}_{M}}=\dfrac{5}{12}inches.......\left( 3 \right) \\
\end{align}$
Similarly, $\begin{align}
& {{R}_{K}}=\dfrac{{{D}_{K}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{K}}=\dfrac{\left( \dfrac{7}{10} \right)inches}{2} \\
& \Rightarrow {{R}_{K}}=\dfrac{7}{20}inches..........\left( 4 \right) \\
\end{align}$
Now, we will calculate the area of rangolis made by each of them. The area of a circle with a given radius is calculated by the formula: $Area=\pi {{\left( radius \right)}^{2}}$
The area of their rangolis are ${{A}_{T}},{{A}_{S}},{{A}_{M}},\text{ }and\text{ }{{A}_{k}}$ respectively. Thus, we have: ${{A}_{T}}=\pi {{\left( \dfrac{17}{40} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{T}}=\dfrac{289\pi }{1600}inc{{h}^{2}}$
Similarly, ${{A}_{S}}=\pi {{\left( \dfrac{3}{8} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{S}}=\dfrac{9\pi }{64}inc{{h}^{2}}$
Similarly, ${{A}_{M}}=\pi {{\left( \dfrac{5}{12} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{M}}=\dfrac{25\pi }{144}inc{{h}^{2}}$
Similarly, ${{A}_{K}}=\pi {{\left( \dfrac{7}{20} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{M}}=\dfrac{49\pi }{400}inc{{h}^{2}}$
Now, we will take LCM of denominators. The denominators are: 1600, 64, 144 and 400.
Factors of 1600:
$\Rightarrow 1600=2\times 2\times 2\times 2\times 2\times 2\times 5\times 5$
Factors of 64:
$\Rightarrow 64=2\times 2\times 2\times 2\times 2\times 2$
Factors of 144:
$\Rightarrow 144=2\times 2\times 2\times 2\times 3\times 3$
Factors of 400:
$\Rightarrow 400=2\times 2\times 2\times 2\times 5\times 5$
Thus, the LCM will be $=\left( 2\times 2\times 2\times 2 \right)\times \left( 2\times 2 \right)\times \left( 5\times 5 \right)\times \left( 3\times 3 \right)$
$\Rightarrow LCM=14400$
Now, we will multiply it to each area. Thus we will get:
$\begin{align}
& A_{T}^{1}=14400{{A}_{T}}=14400\times \dfrac{289\pi }{1600} \\
& A_{T}^{1}=2601\pi \text{ }inche{{s}^{2}} \\
& A_{s}^{1}=14400{{A}_{S}}=14400\times \dfrac{9\pi }{64} \\
& A_{S}^{1}=2025\pi inche{{s}^{2}} \\
& A_{M}^{1}=14400{{A}_{M}}=14400\times \dfrac{25\pi }{144} \\
& A_{M}^{1}=2500\pi \text{ }inche{{s}^{2}} \\
& A_{k}^{1}=14400{{A}_{K}}=14400\times \dfrac{49\pi }{400} \\
& A_{k}^{1}=1764\pi \text{ }inche{{s}^{2}} \\
\end{align}$
Here, we can see that $A_{K}^{1}$ is smallest among the four. So, the rangoli made by Kalveen will be the smallest.
Hence, option (a) is correct.
Note: Instead of finding the areas and taking LCM after that, we can directly take the LCM of the denominators of the diameter of rangolis. Thus, the denominators are: 20, 4, 6, 10.The LCM will be 60. Now, we will multiply this to each diameter. Thus, we get:
\[\begin{align}
& D_{T}^{1}=60{{D}_{T}}=60\times \dfrac{17}{20}=51 \\
& D_{S}^{1}=60{{D}_{S}}=60\times \dfrac{3}{4}=45 \\
& D_{M}^{1}=60{{D}_{M}}=60\times \dfrac{5}{6}=50 \\
& D_{K}^{1}=60{{D}_{K}}=60\times \dfrac{7}{10}=42 \\
\end{align}\]
Here \[D_{K}^{1}\] is smallest so that rangoli made by Kalveen is smallest.
Complete step-by-step answer:
To determine, who has made the smallest rangoli, we will first find out the radii of each rangoli. Let the radii of rangoli made by Trishu, Sidak, Mini and Kavleen are ${{R}_{T,}}{{R}_{S}},{{R}_{M}}\text{ }and\text{ }{{R}_{K}}$ respectively. The diameter of their rangolis are ${{D}_{T}},{{D}_{S}},{{D}_{M}},\text{ }and\text{ }{{D}_{K}}$ respectively. Now, the relation between the diameter and radii of any circle is given by:
$Radius=\dfrac{Diameter}{2}$
Thus, $\begin{align}
& {{R}_{T}}=\dfrac{{{D}_{T}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{T}}=\dfrac{\left( \dfrac{17}{20} \right)inches}{2} \\
& \Rightarrow {{R}_{T}}=\dfrac{17}{40}inches.........\left( 1 \right) \\
\end{align}$
Similarly, \[\begin{align}
& {{R}_{S}}=\dfrac{{{D}_{S}}}{2} \\
& \\
\end{align}\]
$\begin{align}
& \Rightarrow {{R}_{S}}=\dfrac{\left( \dfrac{3}{4} \right)inches}{2} \\
& \Rightarrow \,{{R}_{S}}=\dfrac{3}{8}inches.......\left( 2 \right) \\
\end{align}$
Similarly,$\begin{align}
& {{R}_{M}}=\dfrac{{{D}_{M}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{M}}=\dfrac{\left( \dfrac{5}{6} \right)inches}{2} \\
& \Rightarrow {{R}_{M}}=\dfrac{5}{12}inches.......\left( 3 \right) \\
\end{align}$
Similarly, $\begin{align}
& {{R}_{K}}=\dfrac{{{D}_{K}}}{2} \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow {{R}_{K}}=\dfrac{\left( \dfrac{7}{10} \right)inches}{2} \\
& \Rightarrow {{R}_{K}}=\dfrac{7}{20}inches..........\left( 4 \right) \\
\end{align}$
Now, we will calculate the area of rangolis made by each of them. The area of a circle with a given radius is calculated by the formula: $Area=\pi {{\left( radius \right)}^{2}}$
The area of their rangolis are ${{A}_{T}},{{A}_{S}},{{A}_{M}},\text{ }and\text{ }{{A}_{k}}$ respectively. Thus, we have: ${{A}_{T}}=\pi {{\left( \dfrac{17}{40} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{T}}=\dfrac{289\pi }{1600}inc{{h}^{2}}$
Similarly, ${{A}_{S}}=\pi {{\left( \dfrac{3}{8} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{S}}=\dfrac{9\pi }{64}inc{{h}^{2}}$
Similarly, ${{A}_{M}}=\pi {{\left( \dfrac{5}{12} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{M}}=\dfrac{25\pi }{144}inc{{h}^{2}}$
Similarly, ${{A}_{K}}=\pi {{\left( \dfrac{7}{20} \right)}^{2}}inc{{h}^{2}}$
$\Rightarrow {{A}_{M}}=\dfrac{49\pi }{400}inc{{h}^{2}}$
Now, we will take LCM of denominators. The denominators are: 1600, 64, 144 and 400.
Factors of 1600:
$\Rightarrow 1600=2\times 2\times 2\times 2\times 2\times 2\times 5\times 5$
Factors of 64:
$\Rightarrow 64=2\times 2\times 2\times 2\times 2\times 2$
Factors of 144:
$\Rightarrow 144=2\times 2\times 2\times 2\times 3\times 3$
Factors of 400:
$\Rightarrow 400=2\times 2\times 2\times 2\times 5\times 5$
Thus, the LCM will be $=\left( 2\times 2\times 2\times 2 \right)\times \left( 2\times 2 \right)\times \left( 5\times 5 \right)\times \left( 3\times 3 \right)$
$\Rightarrow LCM=14400$
Now, we will multiply it to each area. Thus we will get:
$\begin{align}
& A_{T}^{1}=14400{{A}_{T}}=14400\times \dfrac{289\pi }{1600} \\
& A_{T}^{1}=2601\pi \text{ }inche{{s}^{2}} \\
& A_{s}^{1}=14400{{A}_{S}}=14400\times \dfrac{9\pi }{64} \\
& A_{S}^{1}=2025\pi inche{{s}^{2}} \\
& A_{M}^{1}=14400{{A}_{M}}=14400\times \dfrac{25\pi }{144} \\
& A_{M}^{1}=2500\pi \text{ }inche{{s}^{2}} \\
& A_{k}^{1}=14400{{A}_{K}}=14400\times \dfrac{49\pi }{400} \\
& A_{k}^{1}=1764\pi \text{ }inche{{s}^{2}} \\
\end{align}$
Here, we can see that $A_{K}^{1}$ is smallest among the four. So, the rangoli made by Kalveen will be the smallest.
Hence, option (a) is correct.
Note: Instead of finding the areas and taking LCM after that, we can directly take the LCM of the denominators of the diameter of rangolis. Thus, the denominators are: 20, 4, 6, 10.The LCM will be 60. Now, we will multiply this to each diameter. Thus, we get:
\[\begin{align}
& D_{T}^{1}=60{{D}_{T}}=60\times \dfrac{17}{20}=51 \\
& D_{S}^{1}=60{{D}_{S}}=60\times \dfrac{3}{4}=45 \\
& D_{M}^{1}=60{{D}_{M}}=60\times \dfrac{5}{6}=50 \\
& D_{K}^{1}=60{{D}_{K}}=60\times \dfrac{7}{10}=42 \\
\end{align}\]
Here \[D_{K}^{1}\] is smallest so that rangoli made by Kalveen is smallest.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

