
In Allene (\[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{4}}}\]), the type(s) of hybridization of the carbon atoms is (are)?
A sp and \[{\text{s}}{{\text{p}}^3}\]
B sp and \[{\text{s}}{{\text{p}}^{\text{2}}}\]
C only \[{\text{s}}{{\text{p}}^{\text{2}}}\]
D \[{\text{s}}{{\text{p}}^{\text{2}}}\]and \[{\text{s}}{{\text{p}}^3}\]
Answer
484.2k+ views
Hint:
The atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization. Hybridization also defines the structure of the molecules. For a specific hybridization there is a specific structure of the molecules. Which is called molecular geometry.
Formula used: \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]
Complete step by step answer:
Allene is an organic compound ,where every carbon atom are bounded with another carbon atom with double bond. These compounds are also called cumulated dienes. The structure of the simplest allene is shown below.
The formula to calculate the hybridization of the central molecule is, \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]. where V is the number of valence electrons of the central atom, X is the number of monovalent atoms attached to the central atom, C is the total cationic charge and A is the total anionic charge.
Now for allene \[{{\text{c}}_1}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[{\text{s}}{{\text{p}}^2}\].
Now for allene \[{{\text{c}}_2}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 0 - 0 + 0} \right] \\
= \dfrac{1}{2} \times 4 \\
= 2 \\
\]
For H=2 hybridization is\[{\text{sp}}\].
Now for allene \[{{\text{c}}_3}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[s{p^2}\].
Therefore the hybridizations of allene is \[{\text{sp}}\] and \[s{p^2}\].
The correct option is, B.
Note: Atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization.
The atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization. Hybridization also defines the structure of the molecules. For a specific hybridization there is a specific structure of the molecules. Which is called molecular geometry.
Formula used: \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]
Complete step by step answer:
Allene is an organic compound ,where every carbon atom are bounded with another carbon atom with double bond. These compounds are also called cumulated dienes. The structure of the simplest allene is shown below.

The formula to calculate the hybridization of the central molecule is, \[H = \dfrac{1}{2}\left[ {V + X - C + A} \right]\]. where V is the number of valence electrons of the central atom, X is the number of monovalent atoms attached to the central atom, C is the total cationic charge and A is the total anionic charge.
Now for allene \[{{\text{c}}_1}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[{\text{s}}{{\text{p}}^2}\].
Now for allene \[{{\text{c}}_2}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 0 - 0 + 0} \right] \\
= \dfrac{1}{2} \times 4 \\
= 2 \\
\]
For H=2 hybridization is\[{\text{sp}}\].
Now for allene \[{{\text{c}}_3}\] carbon hybridization is,
\[
H = \dfrac{1}{2}\left[ {V + X - C + A} \right] \\
= \dfrac{1}{2}\left[ {4 + 2 - 0 + 0} \right] \\
= \dfrac{1}{2}\left[ 6 \right] \\
= 3 \\
\]
For H=3 hybridization is \[s{p^2}\].
Therefore the hybridizations of allene is \[{\text{sp}}\] and \[s{p^2}\].
The correct option is, B.
Note: Atomic orbitals of an atom combine with each other to form a new set of hybrid orbitals, which are more prominent to bonding with upcoming elements. This process of forming new hybrid orbitals is called hybridization.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
