
In $\text{ALFA+BETA+GAMA=DELTA}$, each letter stands for a unique number. Find the value of each letter.
Answer
564.6k+ views
Hint: In this type of question, we should assume the values correctly. Assumption should be exact and accurate. If the assumption is exact and accurate then the answer will be satisfying. The set of values differ based on the set of the assumed values.
Complete step-by-step solution:
From the question we had been given that,
$\text{ALFA+BETA+GAMA=DELTA}$
Let us assume the values of
$A=5$
$L=7$
$F=6$
Now, the value of $\text{ALFA}$ will be equal to,$\text{ALFA=5765}$
Now, let us assume the values of
$\begin{align}
& B=8 \\
& E=4 \\
& T=2 \\
\end{align}$
Now, the value of $BETA$ will be equal to, $BETA=8425$
Now, let us assume the values of
$\begin{align}
& G=0 \\
& M=3 \\
\end{align}$
Now, the value of $GAMA$ will be equal to,$GAMA=0535$
Now, let us assume the value of $D=1$
Now the value of \[DELTA\]will be equal to, $DELTA=14725$
Now, we have to check whether $\text{ALFA+BETA+GAMA=DELTA}$ or not.
Therefore, $\text{ALFA+BETA+GAMA=5765+8425+535}$
$\text{ALFA+BETA+GAMA=14725}$
And before we got the value of $\text{DELTA=14725}$
Therefore $\text{ALFA+BETA+GAMA=DELTA}$
The possible values of each letter would be
$A=5,L=7,F=6,B=8,T=2,G=0,M=3,D=1,E=4$
Now, let us assume another set of values.
Let us assume the values of
$\begin{align}
& \text{A=5} \\
& \text{L=7} \\
& \text{F=6} \\
\end{align}$
Now, the value of $\text{ALFA}$ will be equal to,
$\text{ALFA=5765}$
Now, let us assume the values of
$\begin{align}
& \text{B=0} \\
& \text{E=4} \\
& \text{T=2} \\
\end{align}$
Now, the value of $\text{BETA}$ will be equal to,
$\text{BETA=425}$
Now, let us assume the values of
$\begin{align}
& \text{G=8} \\
& \text{M=3} \\
\end{align}$
Now, the value of $\text{GAMA}$ will be equal to,
$\text{GAMA=8535}$
Now, let us assume the value of $D=1$
Now, the value of $DELTA$ will be equal to,
$DELTA=14725$
Now, we have to check whether $\text{ALFA+BETA+GAMA=DELTA}$ or not,
$\begin{align}
& \text{ALFA+BETA+GAMA=5765+425+8535} \\
& \Rightarrow \text{ALFA+BETA+GAMA=14725} \\
\end{align}$
Hence verified,
The possible set of values for $\text{ALFA+BETA+GAMA=DELTA}$ are ,
($A=5,L=7,F=6,B=8,T=2,G=0,M=3,D=1,E=4$)
($A=5,L=7,F=6,B=0,T=2,G=8,M=3,D=1,E=4$)
Note: In this type of question we should have to assume the values exactly and accurately. We should assume the values and verify the values assumed are whether correct or not. We should verify the set of values which are assumed to be satisfying or not. For questions of this type the set of values may differ but can satisfy the given condition.
Complete step-by-step solution:
From the question we had been given that,
$\text{ALFA+BETA+GAMA=DELTA}$
Let us assume the values of
$A=5$
$L=7$
$F=6$
Now, the value of $\text{ALFA}$ will be equal to,$\text{ALFA=5765}$
Now, let us assume the values of
$\begin{align}
& B=8 \\
& E=4 \\
& T=2 \\
\end{align}$
Now, the value of $BETA$ will be equal to, $BETA=8425$
Now, let us assume the values of
$\begin{align}
& G=0 \\
& M=3 \\
\end{align}$
Now, the value of $GAMA$ will be equal to,$GAMA=0535$
Now, let us assume the value of $D=1$
Now the value of \[DELTA\]will be equal to, $DELTA=14725$
Now, we have to check whether $\text{ALFA+BETA+GAMA=DELTA}$ or not.
Therefore, $\text{ALFA+BETA+GAMA=5765+8425+535}$
$\text{ALFA+BETA+GAMA=14725}$
And before we got the value of $\text{DELTA=14725}$
Therefore $\text{ALFA+BETA+GAMA=DELTA}$
The possible values of each letter would be
$A=5,L=7,F=6,B=8,T=2,G=0,M=3,D=1,E=4$
Now, let us assume another set of values.
Let us assume the values of
$\begin{align}
& \text{A=5} \\
& \text{L=7} \\
& \text{F=6} \\
\end{align}$
Now, the value of $\text{ALFA}$ will be equal to,
$\text{ALFA=5765}$
Now, let us assume the values of
$\begin{align}
& \text{B=0} \\
& \text{E=4} \\
& \text{T=2} \\
\end{align}$
Now, the value of $\text{BETA}$ will be equal to,
$\text{BETA=425}$
Now, let us assume the values of
$\begin{align}
& \text{G=8} \\
& \text{M=3} \\
\end{align}$
Now, the value of $\text{GAMA}$ will be equal to,
$\text{GAMA=8535}$
Now, let us assume the value of $D=1$
Now, the value of $DELTA$ will be equal to,
$DELTA=14725$
Now, we have to check whether $\text{ALFA+BETA+GAMA=DELTA}$ or not,
$\begin{align}
& \text{ALFA+BETA+GAMA=5765+425+8535} \\
& \Rightarrow \text{ALFA+BETA+GAMA=14725} \\
\end{align}$
Hence verified,
The possible set of values for $\text{ALFA+BETA+GAMA=DELTA}$ are ,
($A=5,L=7,F=6,B=8,T=2,G=0,M=3,D=1,E=4$)
($A=5,L=7,F=6,B=0,T=2,G=8,M=3,D=1,E=4$)
Note: In this type of question we should have to assume the values exactly and accurately. We should assume the values and verify the values assumed are whether correct or not. We should verify the set of values which are assumed to be satisfying or not. For questions of this type the set of values may differ but can satisfy the given condition.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

