
In a water-fall, the water falls from a height of $100$m. If the entire K.E. of water is converted into heat, the rise in temperature of water will be
A. ${0.23^ \circ }C$
B. ${0.46^ \circ }C$
C. ${2.3^ \circ }C$
D. ${0.023^ \circ }C$
Answer
509.4k+ views
Hint: To calculate the rise of temperature of water, we need to use the concept of kinetic energy converted into heat. Also, the velocity of water falling freely under gravity depends on the mass of the body, acceleration due the gravity of the earth and height from which it is falling.
Formulae used:
Kinetic energy $K = \dfrac{1}{2}m{v^2}$
Velocity of water falling freely under gravity $v = \sqrt {2gh} $
Where, $m$ - mass of water, $h$ - height of the water fall and $g$ - acceleration due to gravity.
Complete step by step answer:
We are given $h = 100$ m.
Let us consider $m = 1$ kg of water converting into heat.
So, velocity of the water in waterfall, $v = \sqrt {2gh} $
$v = \sqrt {2 \times 9.8 \times 100} $
\[\Rightarrow v = 44.27\,m{s^{ - 1}} - - - - - - - (1)\]
The kinetic energy of the water is given by $K = \dfrac{1}{2}m{v^2}$
$K = \dfrac{1}{2} \times 1 \times {\left( {44.27} \right)^2}$
$\Rightarrow K = 980\,J - - - - - - - - - - (2)$
Now, the whole kinetic energy is converted into heat.So the heat capacity of the water is $4184Jk{g^{ - 1}}{K^{ - 1}}$ . The $980\,J$ of water raise the temperature of each $1\,kg$ of water by \[\left( {\dfrac{{980}}{{4184}}} \right)\]$ ^\circ C$. So, the rise in temperature is ${0.23^ \circ }C$.
Hence, option A is correct.
Note: Heat capacity is the quantity of the heat required to raise the temperature of the substance by one degree. If the mass of the substance is unity then the heat capacity is called Specific heat capacity. The motion of water from the waterfall is under the freely falling bodies.
Formulae used:
Kinetic energy $K = \dfrac{1}{2}m{v^2}$
Velocity of water falling freely under gravity $v = \sqrt {2gh} $
Where, $m$ - mass of water, $h$ - height of the water fall and $g$ - acceleration due to gravity.
Complete step by step answer:
We are given $h = 100$ m.
Let us consider $m = 1$ kg of water converting into heat.
So, velocity of the water in waterfall, $v = \sqrt {2gh} $
$v = \sqrt {2 \times 9.8 \times 100} $
\[\Rightarrow v = 44.27\,m{s^{ - 1}} - - - - - - - (1)\]
The kinetic energy of the water is given by $K = \dfrac{1}{2}m{v^2}$
$K = \dfrac{1}{2} \times 1 \times {\left( {44.27} \right)^2}$
$\Rightarrow K = 980\,J - - - - - - - - - - (2)$
Now, the whole kinetic energy is converted into heat.So the heat capacity of the water is $4184Jk{g^{ - 1}}{K^{ - 1}}$ . The $980\,J$ of water raise the temperature of each $1\,kg$ of water by \[\left( {\dfrac{{980}}{{4184}}} \right)\]$ ^\circ C$. So, the rise in temperature is ${0.23^ \circ }C$.
Hence, option A is correct.
Note: Heat capacity is the quantity of the heat required to raise the temperature of the substance by one degree. If the mass of the substance is unity then the heat capacity is called Specific heat capacity. The motion of water from the waterfall is under the freely falling bodies.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

