
In a triangle $\vartriangle ABC$, $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2$, then the values of $\tan A,\tan B,\tan C$ are
1) 1,2,3
2) $3,\dfrac{2}{3},\dfrac{7}{3}$
3) $4,\dfrac{1}{2},\dfrac{3}{2}$
4) none of these
Answer
584.1k+ views
Hint: We will use the angle sum property of a triangle and will write the condition, $\angle A + \angle B + \angle C = {180^ \circ }$ and then we will take tan on both sides. Then, apply the formula $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$, to simplify the expression. We will cross multiply and substitute the given values to get the required values.
Complete step-by-step answer:
We are given that $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2$.
We have to find the values of $\tan A,\tan B,\tan C$.
If $A,B$ and $C$ are three angles of a triangle, the sum of three angles is ${180^ \circ }$.
Then, $\angle A + \angle B + \angle C = {180^ \circ }$
And $\angle A + \angle B = {180^ \circ } - \angle C$
Taking tan on both sides.
$\tan \left( {\angle A + \angle B} \right) = \tan \left( {{{180}^ \circ } - \angle C} \right)$
We know that $\tan \left( {{{180}^ \circ } - \theta } \right)$ lies in second quadrant and is equal to $ - \tan \theta $
$\tan \left( {\angle A + \angle B} \right) = - \tan \angle C$
Now, we will apply the formula, $\tan \left( {\angle A + \angle B} \right)$ which is $\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Then,
$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C$
On cross-multiplying the equation, we will get,
$
\tan A + \tan B = - \tan C + \tan A\tan B\tan C \\
\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C \\
$
Now, we will substitute the values of $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2$ in the above equation
$
6 = 2\tan C \\
\tan C = 3 \\
$
We will substitute this value in $\tan A + \tan B + \tan C = 6$
$\tan A + \tan B + 3 = 6$
$ \Rightarrow \tan A + \tan B = 3$ eqn. (1)
Now, we know that ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$
Then,
${\left( {\tan A + \tan B} \right)^2} - 4\tan A\tan B = {\left( {\tan A - \tan B} \right)^2}$
Substitute the known values in the
$
{\left( 3 \right)^2} - 4\left( 2 \right) = {\left( {\tan A - \tan B} \right)^2} \\
\Rightarrow 9 - 8 = {\left( {\tan A - \tan B} \right)^2} \\
$
$ \Rightarrow \tan A - \tan B = 1$ eqn. (2)
We will add equation (1) and equation (2) to find the value of $\tan A$
$
\tan A + \tan B + \tan A - \tan B = 1 + 3 \\
\Rightarrow 2\tan A = 4 \\
\Rightarrow \tan A = 2 \\
$
Substitute the value of \[\tan A\] in equation (1) to find the value of $\tan B$.
$
2 + \tan B = 3 \\
\Rightarrow \tan B = 1 \\
$
Hence, the value of $\tan A$ is 2, $\tan B$ is 1 and $\tan C$ is 3.
Hence, option A is correct.
Note: Since, $A,B$ and $C$ are three angles of a triangle, their sum is equal to ${180^ \circ }$. One must the formula of $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to do this question correctly, Similar type of question is also possible with cot ratio of triangle.
Complete step-by-step answer:
We are given that $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2$.
We have to find the values of $\tan A,\tan B,\tan C$.
If $A,B$ and $C$ are three angles of a triangle, the sum of three angles is ${180^ \circ }$.
Then, $\angle A + \angle B + \angle C = {180^ \circ }$
And $\angle A + \angle B = {180^ \circ } - \angle C$
Taking tan on both sides.
$\tan \left( {\angle A + \angle B} \right) = \tan \left( {{{180}^ \circ } - \angle C} \right)$
We know that $\tan \left( {{{180}^ \circ } - \theta } \right)$ lies in second quadrant and is equal to $ - \tan \theta $
$\tan \left( {\angle A + \angle B} \right) = - \tan \angle C$
Now, we will apply the formula, $\tan \left( {\angle A + \angle B} \right)$ which is $\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Then,
$\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C$
On cross-multiplying the equation, we will get,
$
\tan A + \tan B = - \tan C + \tan A\tan B\tan C \\
\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C \\
$
Now, we will substitute the values of $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2$ in the above equation
$
6 = 2\tan C \\
\tan C = 3 \\
$
We will substitute this value in $\tan A + \tan B + \tan C = 6$
$\tan A + \tan B + 3 = 6$
$ \Rightarrow \tan A + \tan B = 3$ eqn. (1)
Now, we know that ${\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}$
Then,
${\left( {\tan A + \tan B} \right)^2} - 4\tan A\tan B = {\left( {\tan A - \tan B} \right)^2}$
Substitute the known values in the
$
{\left( 3 \right)^2} - 4\left( 2 \right) = {\left( {\tan A - \tan B} \right)^2} \\
\Rightarrow 9 - 8 = {\left( {\tan A - \tan B} \right)^2} \\
$
$ \Rightarrow \tan A - \tan B = 1$ eqn. (2)
We will add equation (1) and equation (2) to find the value of $\tan A$
$
\tan A + \tan B + \tan A - \tan B = 1 + 3 \\
\Rightarrow 2\tan A = 4 \\
\Rightarrow \tan A = 2 \\
$
Substitute the value of \[\tan A\] in equation (1) to find the value of $\tan B$.
$
2 + \tan B = 3 \\
\Rightarrow \tan B = 1 \\
$
Hence, the value of $\tan A$ is 2, $\tan B$ is 1 and $\tan C$ is 3.
Hence, option A is correct.
Note: Since, $A,B$ and $C$ are three angles of a triangle, their sum is equal to ${180^ \circ }$. One must the formula of $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ to do this question correctly, Similar type of question is also possible with cot ratio of triangle.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

