
In a triangle ABC, Sin A –Cos B= Cos C then what is B equal to?
A. $ \pi $
B. $ \dfrac{\pi }{3} $
C. $ \dfrac{\pi }{2} $
D. $ \dfrac{\pi }{4} $
Answer
585k+ views
Hint: We know that the sum of inner angles in a triangle is 180 by using this we can substitute A (because we need to find B so we will not substitute B). Put Cos C and Cos B in LHS then use Cos C + Cos D formula.
Complete step-by-step answer:
It is given that,
$ \operatorname{Sin}A-\operatorname{Cos}B=\operatorname{Cos}C $
Add Cos B to both sides,
$ \operatorname{Sin}A=\operatorname{Cos}B+\operatorname{Cos}C $
Now we can use $ \operatorname{Cos}x+\operatorname{Cos}y=2.\operatorname{Cos}\dfrac{x+y}{2}.\operatorname{Cos}\dfrac{x-y}{2} $
Apply it on LHS,
$ \operatorname{Sin}A=2.\operatorname{Cos}\dfrac{B+C}{2}.\operatorname{Cos}\dfrac{B-C}{2} $ …… (1)
We know that in a triangle,
$ \begin{align}
& A+B+C={{180}^{\circ }} \\
& B+C={{180}^{\circ }}-A \\
& \dfrac{B+C}{2}={{90}^{\circ }}-\dfrac{A}{2} \\
\end{align} $
Substitute this value in equation (1).
$ \operatorname{Sin}A=2.\operatorname{Cos}\left( 90-\dfrac{A}{2} \right).\operatorname{Cos}\dfrac{(B-C)}{2} $
$ \operatorname{Sin}A=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Cos}(90-x)=\operatorname{Sin}x) $
$ 2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{A}{2}=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Sin}2x=2.\operatorname{Sin}x.\operatorname{Cos}x) $
We can cancel 2.SinA/2 from both sides.
$ \begin{align}
& \operatorname{Cos}\dfrac{A}{2}=\operatorname{Cos}\dfrac{(B-C)}{2} \\
& \dfrac{A}{2}=\dfrac{(B-C)}{2} \\
& A=B-C \\
& A+C=B \\
& {{180}^{\circ }}-B=B \\
& B={{90}^{\circ }} \\
\end{align} $
Note:- All the angles are in degree form. We can also verify options by putting each value given in the options. To avoid mistakes, recall the behavior of trigonometry ratios in all coordinates.
Complete step-by-step answer:
It is given that,
$ \operatorname{Sin}A-\operatorname{Cos}B=\operatorname{Cos}C $
Add Cos B to both sides,
$ \operatorname{Sin}A=\operatorname{Cos}B+\operatorname{Cos}C $
Now we can use $ \operatorname{Cos}x+\operatorname{Cos}y=2.\operatorname{Cos}\dfrac{x+y}{2}.\operatorname{Cos}\dfrac{x-y}{2} $
Apply it on LHS,
$ \operatorname{Sin}A=2.\operatorname{Cos}\dfrac{B+C}{2}.\operatorname{Cos}\dfrac{B-C}{2} $ …… (1)
We know that in a triangle,
$ \begin{align}
& A+B+C={{180}^{\circ }} \\
& B+C={{180}^{\circ }}-A \\
& \dfrac{B+C}{2}={{90}^{\circ }}-\dfrac{A}{2} \\
\end{align} $
Substitute this value in equation (1).
$ \operatorname{Sin}A=2.\operatorname{Cos}\left( 90-\dfrac{A}{2} \right).\operatorname{Cos}\dfrac{(B-C)}{2} $
$ \operatorname{Sin}A=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Cos}(90-x)=\operatorname{Sin}x) $
$ 2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{A}{2}=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Sin}2x=2.\operatorname{Sin}x.\operatorname{Cos}x) $
We can cancel 2.SinA/2 from both sides.
$ \begin{align}
& \operatorname{Cos}\dfrac{A}{2}=\operatorname{Cos}\dfrac{(B-C)}{2} \\
& \dfrac{A}{2}=\dfrac{(B-C)}{2} \\
& A=B-C \\
& A+C=B \\
& {{180}^{\circ }}-B=B \\
& B={{90}^{\circ }} \\
\end{align} $
Note:- All the angles are in degree form. We can also verify options by putting each value given in the options. To avoid mistakes, recall the behavior of trigonometry ratios in all coordinates.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

