
In a triangle ABC, Sin A –Cos B= Cos C then what is B equal to?
A. $ \pi $
B. $ \dfrac{\pi }{3} $
C. $ \dfrac{\pi }{2} $
D. $ \dfrac{\pi }{4} $
Answer
598.5k+ views
Hint: We know that the sum of inner angles in a triangle is 180 by using this we can substitute A (because we need to find B so we will not substitute B). Put Cos C and Cos B in LHS then use Cos C + Cos D formula.
Complete step-by-step answer:
It is given that,
$ \operatorname{Sin}A-\operatorname{Cos}B=\operatorname{Cos}C $
Add Cos B to both sides,
$ \operatorname{Sin}A=\operatorname{Cos}B+\operatorname{Cos}C $
Now we can use $ \operatorname{Cos}x+\operatorname{Cos}y=2.\operatorname{Cos}\dfrac{x+y}{2}.\operatorname{Cos}\dfrac{x-y}{2} $
Apply it on LHS,
$ \operatorname{Sin}A=2.\operatorname{Cos}\dfrac{B+C}{2}.\operatorname{Cos}\dfrac{B-C}{2} $ …… (1)
We know that in a triangle,
$ \begin{align}
& A+B+C={{180}^{\circ }} \\
& B+C={{180}^{\circ }}-A \\
& \dfrac{B+C}{2}={{90}^{\circ }}-\dfrac{A}{2} \\
\end{align} $
Substitute this value in equation (1).
$ \operatorname{Sin}A=2.\operatorname{Cos}\left( 90-\dfrac{A}{2} \right).\operatorname{Cos}\dfrac{(B-C)}{2} $
$ \operatorname{Sin}A=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Cos}(90-x)=\operatorname{Sin}x) $
$ 2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{A}{2}=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Sin}2x=2.\operatorname{Sin}x.\operatorname{Cos}x) $
We can cancel 2.SinA/2 from both sides.
$ \begin{align}
& \operatorname{Cos}\dfrac{A}{2}=\operatorname{Cos}\dfrac{(B-C)}{2} \\
& \dfrac{A}{2}=\dfrac{(B-C)}{2} \\
& A=B-C \\
& A+C=B \\
& {{180}^{\circ }}-B=B \\
& B={{90}^{\circ }} \\
\end{align} $
Note:- All the angles are in degree form. We can also verify options by putting each value given in the options. To avoid mistakes, recall the behavior of trigonometry ratios in all coordinates.
Complete step-by-step answer:
It is given that,
$ \operatorname{Sin}A-\operatorname{Cos}B=\operatorname{Cos}C $
Add Cos B to both sides,
$ \operatorname{Sin}A=\operatorname{Cos}B+\operatorname{Cos}C $
Now we can use $ \operatorname{Cos}x+\operatorname{Cos}y=2.\operatorname{Cos}\dfrac{x+y}{2}.\operatorname{Cos}\dfrac{x-y}{2} $
Apply it on LHS,
$ \operatorname{Sin}A=2.\operatorname{Cos}\dfrac{B+C}{2}.\operatorname{Cos}\dfrac{B-C}{2} $ …… (1)
We know that in a triangle,
$ \begin{align}
& A+B+C={{180}^{\circ }} \\
& B+C={{180}^{\circ }}-A \\
& \dfrac{B+C}{2}={{90}^{\circ }}-\dfrac{A}{2} \\
\end{align} $
Substitute this value in equation (1).
$ \operatorname{Sin}A=2.\operatorname{Cos}\left( 90-\dfrac{A}{2} \right).\operatorname{Cos}\dfrac{(B-C)}{2} $
$ \operatorname{Sin}A=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Cos}(90-x)=\operatorname{Sin}x) $
$ 2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{A}{2}=2.\operatorname{Sin}\dfrac{A}{2}.\operatorname{Cos}\dfrac{(B-C)}{2} $ $ (\because \operatorname{Sin}2x=2.\operatorname{Sin}x.\operatorname{Cos}x) $
We can cancel 2.SinA/2 from both sides.
$ \begin{align}
& \operatorname{Cos}\dfrac{A}{2}=\operatorname{Cos}\dfrac{(B-C)}{2} \\
& \dfrac{A}{2}=\dfrac{(B-C)}{2} \\
& A=B-C \\
& A+C=B \\
& {{180}^{\circ }}-B=B \\
& B={{90}^{\circ }} \\
\end{align} $
Note:- All the angles are in degree form. We can also verify options by putting each value given in the options. To avoid mistakes, recall the behavior of trigonometry ratios in all coordinates.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

