
In a triangle, \[ABC\] , if \[\sum {\sin 3A} = 0\] , then it is.
$
\left( A \right)Equilateral \\
\left( B \right)Right{\text{ }}angled \\
\left( C \right)Isosceles \\
\left( D \right)Has{\text{ }}at{\text{ }}least{\text{ }}one{\text{ }}angle{\text{ }}{60^ \circ } \\
$
Answer
540.6k+ views
Hint: In the triangle \[ABC\] , it is given that \[\sum {\sin 3A} = 0\]
Which means that, \[\sin 3A + \sin 3B + \sin 3C = 0\]
Now in order to state that which type of triangle it is, we need to simplify the expression, which can be done by using the formula for \[\sin A + \sin B + \sin C = 0\]
i.e. \[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
Complete step-by-step answer:
First of all, we need to simplify the relation that is given, \[\sum {\sin 3A} = 0\]
$
\sum {\sin 3A} = 0 \\
\sin 3A + \sin 3B + \sin 3C = 0 \;
$
Using the formula,
\[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
In the above equation, we get,
$
\Rightarrow 4\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)cos\left( {\dfrac{C}{2}} \right) = 0 \\
\Rightarrow \cos \left( {\dfrac{{3A}}{2}} \right)\cos \left( {\dfrac{{3B}}{2}} \right)cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
or \\
cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\
or \\
cos\left( {\dfrac{{3C}}{2}} \right) = 0 \;
$
Taking
$
cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3A}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow A = \dfrac{\pi }{3} \;
$
Now if,
$
cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3B}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3B}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow B = \dfrac{\pi }{3} \;
$
Similarly,
$
cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3C}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow C = \dfrac{\pi }{3} \;
$
So, we can observe here that either \[A\] , \[B\] or \[C\] .
Therefore, we have at least one angle in the triangle \[ABC\] ,that equals \[{60^ \circ }\] .
This answer matches the option \[\left( D \right)Has{\text{ }}at{\text{ }}least{\text{ }}one{\text{ }}angle{\text{ }}{60^ \circ }\]
However, we cannot say with surety that more than one angle will be equal to \[{60^ \circ }\] only, it might be or might not be. So, we can’t say there will be two angles equal to \[{60^ \circ }\] making it an isosceles triangle or three equal angles making it an equivalent angle. Also, from the given expression, it can’t be proved that any one angle is a right angle.
So, the only option that can be correct is (D)
So, the correct answer is “Option D”.
Note: The formula for sine functions addition, i.e. \[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
And \[\cos \dfrac{\pi }{2} = 0\] has also been used.
In the step,
$
cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \;
$
Here we haven’t taken \[\left( {2n + 1} \right)\dfrac{\pi }{2}\] , because all the angles are acute and, so the value of \[n\] will always remain zero, and thus, we can directly write,
\[\left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right)\]
Any of the three angles can be equal to \[{60^ \circ }\] , so we can say that at least one of the angles is equal to \[{60^ \circ }\] .
Which means that, \[\sin 3A + \sin 3B + \sin 3C = 0\]
Now in order to state that which type of triangle it is, we need to simplify the expression, which can be done by using the formula for \[\sin A + \sin B + \sin C = 0\]
i.e. \[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
Complete step-by-step answer:
First of all, we need to simplify the relation that is given, \[\sum {\sin 3A} = 0\]
$
\sum {\sin 3A} = 0 \\
\sin 3A + \sin 3B + \sin 3C = 0 \;
$
Using the formula,
\[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
In the above equation, we get,
$
\Rightarrow 4\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)cos\left( {\dfrac{C}{2}} \right) = 0 \\
\Rightarrow \cos \left( {\dfrac{{3A}}{2}} \right)\cos \left( {\dfrac{{3B}}{2}} \right)cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
or \\
cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\
or \\
cos\left( {\dfrac{{3C}}{2}} \right) = 0 \;
$
Taking
$
cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3A}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow A = \dfrac{\pi }{3} \;
$
Now if,
$
cos\left( {\dfrac{{3B}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3B}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3B}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow B = \dfrac{\pi }{3} \;
$
Similarly,
$
cos\left( {\dfrac{{3C}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3C}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow \left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right) \\
\Rightarrow C = \dfrac{\pi }{3} \;
$
So, we can observe here that either \[A\] , \[B\] or \[C\] .
Therefore, we have at least one angle in the triangle \[ABC\] ,that equals \[{60^ \circ }\] .
This answer matches the option \[\left( D \right)Has{\text{ }}at{\text{ }}least{\text{ }}one{\text{ }}angle{\text{ }}{60^ \circ }\]
However, we cannot say with surety that more than one angle will be equal to \[{60^ \circ }\] only, it might be or might not be. So, we can’t say there will be two angles equal to \[{60^ \circ }\] making it an isosceles triangle or three equal angles making it an equivalent angle. Also, from the given expression, it can’t be proved that any one angle is a right angle.
So, the only option that can be correct is (D)
So, the correct answer is “Option D”.
Note: The formula for sine functions addition, i.e. \[\sin A + \sin B + \sin C = 4cos\left( {A/2} \right)cos\left( {B/2} \right)cos\left( {C/2} \right)\]
And \[\cos \dfrac{\pi }{2} = 0\] has also been used.
In the step,
$
cos\left( {\dfrac{{3A}}{2}} \right) = 0 \\
\Rightarrow cos\left( {\dfrac{{3A}}{2}} \right) = cos\left( {\dfrac{\pi }{2}} \right) \;
$
Here we haven’t taken \[\left( {2n + 1} \right)\dfrac{\pi }{2}\] , because all the angles are acute and, so the value of \[n\] will always remain zero, and thus, we can directly write,
\[\left( {\dfrac{{3C}}{2}} \right) = \left( {\dfrac{\pi }{2}} \right)\]
Any of the three angles can be equal to \[{60^ \circ }\] , so we can say that at least one of the angles is equal to \[{60^ \circ }\] .
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

