
In a triangle $ ABC $ if $ \cot \dfrac{A}{2}.\cot \dfrac{B}{2} = c,\cot \dfrac{B}{2}.\cot \dfrac{C}{2} = a $ and $ \cot \dfrac{C}{2}.\cot \dfrac{A}{2} = b $ then $ \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} + \dfrac{1}{{s - c}} = ? $
A) $ - 1 $
B) $ 0 $
C) $ 1 $
D) $ 2 $
Answer
531.3k+ views
Hint: To solve this question we use trigonometric ratios of half angle and then substitute the cot values . Thus, we will have three equations. When we compare these three solutions we will get the solution. We also use heron’s formula in this question.
Complete step-by-step answer:
According to the trigonometric ratios of half angle, we know that
$ \tan \dfrac{A}{2} = \sqrt {\dfrac{{(s - b)(s - c)}}{{s(s - a)}}} $
Then,
$ \cot \dfrac{A}{2} = \sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} $
Now using this formula , we will solve this problem.
It is given in the question that
$
\cot \dfrac{A}{2}.\cot \dfrac{B}{2} = c \\
\sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} .\sqrt {\dfrac{{s(s - b)}}{{(s - a)(s - c)}}} = c \\
\sqrt {\dfrac{{s(s - {a})}}{{(s - {b})(s - c)}}} .\sqrt {\dfrac{{s(s - {b})}}{{(s - {a})(s - c)}}} = c \\
\dfrac{s}{{s - c}} = c - (i) \;
$
Now,
$
\cot \dfrac{B}{2}.\cot \dfrac{C}{2} = a \\
\sqrt {\dfrac{{s(s - b)}}{{(s - a)(s - c)}}} .\sqrt {\dfrac{{s(s - c)}}{{(s - a)(s - b)}}} = a \\
\sqrt {\dfrac{{s(s - {b})}}{{(s - a)(s - {c})}}} .\sqrt {\dfrac{{s(s - {c})}}{{(s - a)(s - {b})}}} = a \\
\dfrac{s}{{s - a}} = a - (ii) \;
$
Now,
$
\cot \dfrac{C}{2}.\cot \dfrac{A}{2} = b \\
\sqrt {\dfrac{{s(s - c)}}{{(s - a)(s - b)}}} .\sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} = b \\
\sqrt {\dfrac{{s(s - {c})}}{{(s - {a})(s - b)}}} .\sqrt {\dfrac{{s(s - {a})}}{{(s - b)(s - {c})}}} = b \\
\dfrac{s}{{s - b}} = b - (iii) \;
$
Now, let us add the three equations
$
\dfrac{s}{{s - c}} + \dfrac{s}{{s - a}} + \dfrac{s}{{s - b}} = c + a + b \\
s\left( {\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}}} \right) = c + a + b \\
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = \dfrac{{a + b + c}}{s} \;
$
According to heron’s formula we know that, $ s = \dfrac{{a + b + c}}{2} $
$
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = \dfrac{{2{s}}}{{{s}}} \\
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = 2 \;
$
Hence, the correct option is (D) which is 2.
So, the correct answer is “OPTION D”.
Note: The sine and cosine formula is derived using the basic formulas of triangle which depicts the relation between sides and angles of triangle. Then these formulas are further used to derive the trigonometric ratios of half angles.
Complete step-by-step answer:
According to the trigonometric ratios of half angle, we know that
$ \tan \dfrac{A}{2} = \sqrt {\dfrac{{(s - b)(s - c)}}{{s(s - a)}}} $
Then,
$ \cot \dfrac{A}{2} = \sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} $
Now using this formula , we will solve this problem.
It is given in the question that
$
\cot \dfrac{A}{2}.\cot \dfrac{B}{2} = c \\
\sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} .\sqrt {\dfrac{{s(s - b)}}{{(s - a)(s - c)}}} = c \\
\sqrt {\dfrac{{s(s - {a})}}{{(s - {b})(s - c)}}} .\sqrt {\dfrac{{s(s - {b})}}{{(s - {a})(s - c)}}} = c \\
\dfrac{s}{{s - c}} = c - (i) \;
$
Now,
$
\cot \dfrac{B}{2}.\cot \dfrac{C}{2} = a \\
\sqrt {\dfrac{{s(s - b)}}{{(s - a)(s - c)}}} .\sqrt {\dfrac{{s(s - c)}}{{(s - a)(s - b)}}} = a \\
\sqrt {\dfrac{{s(s - {b})}}{{(s - a)(s - {c})}}} .\sqrt {\dfrac{{s(s - {c})}}{{(s - a)(s - {b})}}} = a \\
\dfrac{s}{{s - a}} = a - (ii) \;
$
Now,
$
\cot \dfrac{C}{2}.\cot \dfrac{A}{2} = b \\
\sqrt {\dfrac{{s(s - c)}}{{(s - a)(s - b)}}} .\sqrt {\dfrac{{s(s - a)}}{{(s - b)(s - c)}}} = b \\
\sqrt {\dfrac{{s(s - {c})}}{{(s - {a})(s - b)}}} .\sqrt {\dfrac{{s(s - {a})}}{{(s - b)(s - {c})}}} = b \\
\dfrac{s}{{s - b}} = b - (iii) \;
$
Now, let us add the three equations
$
\dfrac{s}{{s - c}} + \dfrac{s}{{s - a}} + \dfrac{s}{{s - b}} = c + a + b \\
s\left( {\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}}} \right) = c + a + b \\
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = \dfrac{{a + b + c}}{s} \;
$
According to heron’s formula we know that, $ s = \dfrac{{a + b + c}}{2} $
$
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = \dfrac{{2{s}}}{{{s}}} \\
\dfrac{1}{{s - c}} + \dfrac{1}{{s - a}} + \dfrac{1}{{s - b}} = 2 \;
$
Hence, the correct option is (D) which is 2.
So, the correct answer is “OPTION D”.
Note: The sine and cosine formula is derived using the basic formulas of triangle which depicts the relation between sides and angles of triangle. Then these formulas are further used to derive the trigonometric ratios of half angles.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

