Answer
Verified
411.3k+ views
Hint: We join BI and CI. We use angle bisector theorem for the angles $\angle ABD,\angle ACD$ in triangle ABD and ACD to get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$ where $a=BC,b=AC,c=AB$. We use sine law of triangle $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}$ and the identities $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$,$\sin 2\theta =2\sin \theta \cos \theta $ to choose the correct options. \[\]
Complete step-by-step solution:
Let us denote the lengths of the sides as $AB=c,BC=a,AC=b$. Let us join BI and CI. We know from the angle bisector theorem, which states that the angle bisector divides the opposite side in a ratio equal to the ratio of lengths of corresponding adjacent sides of the angle. We use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ABD$ which divides the opposite side AD into AI and DI and has adjacent sides AB and BD respectively . We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AB}{BD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{c}{BD}.....\left( 1 \right) \\
\end{align}\]
We again use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ACD$ which divides the opposite side AD into AI and DI and has adjacent sides are AC and CD respectively. We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AC}{CD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{b}{CD}.......\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[\begin{align}
& \dfrac{b}{CD}=\dfrac{c}{BD} \\
& \Rightarrow \dfrac{b}{c}=\dfrac{CD}{BD}\left( \text{By alternendo} \right) \\
\end{align}\]
We add both sides by 1 to have;
\[\begin{align}
& \Rightarrow \dfrac{b+c}{c}=\dfrac{CD+BD}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{BC}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{a}{BD} \\
& \Rightarrow \dfrac{b+c}{a}=\dfrac{c}{BD}......\left( 3 \right) \\
\end{align}\]
We have from (1) and (3)
\[\dfrac{AI}{DI}=\dfrac{b+c}{a}.......\left( 4 \right)\]
We know from sine law that the lengths of triangle and sine of the angle of the opposite sides are always in proportion. It means;
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]
Here $R$ is the circum-radius of the triangle. So we have;
\[a=2R\sin A,b=2R \sin B,c=2R \sin C\]
We put the above values in (4) to have;
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{2R\sin B+2R\sin C}{2R\sin A} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin B+\sin C}{\sin A}......\left( 5 \right) \\
\end{align}\]
We use the identity $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for $C=A,D=C$ and teh sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{A}{2}$ in the above step to have
\[\dfrac{AI}{DI}=\dfrac{2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\]
We know in a triangle $A+B+C=\pi $then we have $\dfrac{\pi }{2}-\dfrac{B+C}{2}=\dfrac{A}{2}$. We have
\[\begin{align}
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)\sin \left( \dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)}....\left( 6 \right) \\
\end{align}\]
We have from (5) and (6)
\[AI:DI=\left( \sin B+\sin C \right):\sin A=\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)\]
So the correct options are A and C.
Note: We can alternatively use the theorem that the in-centre divides the angle bisector in ratio that is equal to the ratio of sum of the lengths of adjacent sides to the opposite sides to directly get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$. We note that in-centre is the point of intersection of angle bisectors and circum-centre is the point of intersection of perpendicular bisectors of sides
Complete step-by-step solution:
Let us denote the lengths of the sides as $AB=c,BC=a,AC=b$. Let us join BI and CI. We know from the angle bisector theorem, which states that the angle bisector divides the opposite side in a ratio equal to the ratio of lengths of corresponding adjacent sides of the angle. We use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ABD$ which divides the opposite side AD into AI and DI and has adjacent sides AB and BD respectively . We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AB}{BD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{c}{BD}.....\left( 1 \right) \\
\end{align}\]
We again use the angle bisector theorem in triangle ABD for the bisector BI of the $\angle ACD$ which divides the opposite side AD into AI and DI and has adjacent sides are AC and CD respectively. We have
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{AC}{CD} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{b}{CD}.......\left( 2 \right) \\
\end{align}\]
We equate right hand sides of (1) and (2) to have;
\[\begin{align}
& \dfrac{b}{CD}=\dfrac{c}{BD} \\
& \Rightarrow \dfrac{b}{c}=\dfrac{CD}{BD}\left( \text{By alternendo} \right) \\
\end{align}\]
We add both sides by 1 to have;
\[\begin{align}
& \Rightarrow \dfrac{b+c}{c}=\dfrac{CD+BD}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{BC}{BD} \\
& \Rightarrow \dfrac{b+c}{c}=\dfrac{a}{BD} \\
& \Rightarrow \dfrac{b+c}{a}=\dfrac{c}{BD}......\left( 3 \right) \\
\end{align}\]
We have from (1) and (3)
\[\dfrac{AI}{DI}=\dfrac{b+c}{a}.......\left( 4 \right)\]
We know from sine law that the lengths of triangle and sine of the angle of the opposite sides are always in proportion. It means;
\[\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\]
Here $R$ is the circum-radius of the triangle. So we have;
\[a=2R\sin A,b=2R \sin B,c=2R \sin C\]
We put the above values in (4) to have;
\[\begin{align}
& \dfrac{AI}{DI}=\dfrac{2R\sin B+2R\sin C}{2R\sin A} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin B+\sin C}{\sin A}......\left( 5 \right) \\
\end{align}\]
We use the identity $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ for $C=A,D=C$ and teh sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{A}{2}$ in the above step to have
\[\dfrac{AI}{DI}=\dfrac{2\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}\]
We know in a triangle $A+B+C=\pi $then we have $\dfrac{\pi }{2}-\dfrac{B+C}{2}=\dfrac{A}{2}$. We have
\[\begin{align}
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\sin \left( \dfrac{B+C}{2} \right)\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)\sin \left( \dfrac{B+C}{2} \right)} \\
& \Rightarrow \dfrac{AI}{DI}=\dfrac{\cos \left( \dfrac{B-C}{2} \right)}{\cos \left( \dfrac{B+C}{2} \right)}....\left( 6 \right) \\
\end{align}\]
We have from (5) and (6)
\[AI:DI=\left( \sin B+\sin C \right):\sin A=\cos \left( \dfrac{B-C}{2} \right):\cos \left( \dfrac{B+C}{2} \right)\]
So the correct options are A and C.
Note: We can alternatively use the theorem that the in-centre divides the angle bisector in ratio that is equal to the ratio of sum of the lengths of adjacent sides to the opposite sides to directly get $\dfrac{AI}{DI}=\dfrac{b+c}{a}$. We note that in-centre is the point of intersection of angle bisectors and circum-centre is the point of intersection of perpendicular bisectors of sides
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations