
In a triangle $ABC$, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$ is equal to
1) $\dfrac{{2c}}{{a + b + c}}$
2) $\dfrac{{2c}}{{a + b - c}}$
3) $\dfrac{{2b}}{{a + b + c}}$
4) None of these
Answer
503.4k+ views
Hint: -We will use the tangent rule for a triangle $ABC$, if the three sides of the triangle are given, that is,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Where, $s = \dfrac{{a + b + c}}{2}$
After finding the values of the required terms, then we will substitute the terms required and perform the required operations to find the required solution.
Complete step-by-step answer:
We know, by the tangent rule of a triangle $ABC$, we get,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
To find, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$
Therefore, substituting these values in the required equation, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}.\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
Now, cancelling the similar terms, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - c} \right)}}{s}.\dfrac{{\left( {s - c} \right)}}{s}} $
$ = 1 - \sqrt {\dfrac{{{{\left( {s - c} \right)}^2}}}{{{s^2}}}} $
Therefore, taking the square root, we get,
$ = 1 - \dfrac{{\left( {s - c} \right)}}{s}$
Now, dividing the numerator by the denominator, we get,
$ = 1 - \left( {1 - \dfrac{c}{s}} \right)$
Now, opening the brackets, we get,
$ = 1 - 1 + \dfrac{c}{s}$
$ = \dfrac{c}{s}$
We know, $s = \dfrac{{a + b + c}}{2}$.
Therefore, substituting this value, we get,
$ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}$
We can also write it as,
$ = \dfrac{{2c}}{{a + b + c}}$
Therefore, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right) = \dfrac{{2c}}{{a + b + c}}$, the correct option is 1.
So, the correct answer is “Option 1”.
Note: Here, in this question we used the tangent rule, but along with the tangent rules, there are also other rules like the sine and cosine rule, that says,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
This is the sine rule.
And, $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
$\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
This is the cosine rule.
So, on the basis of the question and as per requirement we can use these rules to solve the problem.
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Where, $s = \dfrac{{a + b + c}}{2}$
After finding the values of the required terms, then we will substitute the terms required and perform the required operations to find the required solution.
Complete step-by-step answer:
We know, by the tangent rule of a triangle $ABC$, we get,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
To find, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$
Therefore, substituting these values in the required equation, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}.\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
Now, cancelling the similar terms, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - c} \right)}}{s}.\dfrac{{\left( {s - c} \right)}}{s}} $
$ = 1 - \sqrt {\dfrac{{{{\left( {s - c} \right)}^2}}}{{{s^2}}}} $
Therefore, taking the square root, we get,
$ = 1 - \dfrac{{\left( {s - c} \right)}}{s}$
Now, dividing the numerator by the denominator, we get,
$ = 1 - \left( {1 - \dfrac{c}{s}} \right)$
Now, opening the brackets, we get,
$ = 1 - 1 + \dfrac{c}{s}$
$ = \dfrac{c}{s}$
We know, $s = \dfrac{{a + b + c}}{2}$.
Therefore, substituting this value, we get,
$ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}$
We can also write it as,
$ = \dfrac{{2c}}{{a + b + c}}$
Therefore, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right) = \dfrac{{2c}}{{a + b + c}}$, the correct option is 1.
So, the correct answer is “Option 1”.
Note: Here, in this question we used the tangent rule, but along with the tangent rules, there are also other rules like the sine and cosine rule, that says,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
This is the sine rule.
And, $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
$\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
This is the cosine rule.
So, on the basis of the question and as per requirement we can use these rules to solve the problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

