
In a triangle $ABC$, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$ is equal to
1) $\dfrac{{2c}}{{a + b + c}}$
2) $\dfrac{{2c}}{{a + b - c}}$
3) $\dfrac{{2b}}{{a + b + c}}$
4) None of these
Answer
489.3k+ views
Hint: -We will use the tangent rule for a triangle $ABC$, if the three sides of the triangle are given, that is,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Where, $s = \dfrac{{a + b + c}}{2}$
After finding the values of the required terms, then we will substitute the terms required and perform the required operations to find the required solution.
Complete step-by-step answer:
We know, by the tangent rule of a triangle $ABC$, we get,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
To find, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$
Therefore, substituting these values in the required equation, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}.\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
Now, cancelling the similar terms, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - c} \right)}}{s}.\dfrac{{\left( {s - c} \right)}}{s}} $
$ = 1 - \sqrt {\dfrac{{{{\left( {s - c} \right)}^2}}}{{{s^2}}}} $
Therefore, taking the square root, we get,
$ = 1 - \dfrac{{\left( {s - c} \right)}}{s}$
Now, dividing the numerator by the denominator, we get,
$ = 1 - \left( {1 - \dfrac{c}{s}} \right)$
Now, opening the brackets, we get,
$ = 1 - 1 + \dfrac{c}{s}$
$ = \dfrac{c}{s}$
We know, $s = \dfrac{{a + b + c}}{2}$.
Therefore, substituting this value, we get,
$ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}$
We can also write it as,
$ = \dfrac{{2c}}{{a + b + c}}$
Therefore, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right) = \dfrac{{2c}}{{a + b + c}}$, the correct option is 1.
So, the correct answer is “Option 1”.
Note: Here, in this question we used the tangent rule, but along with the tangent rules, there are also other rules like the sine and cosine rule, that says,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
This is the sine rule.
And, $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
$\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
This is the cosine rule.
So, on the basis of the question and as per requirement we can use these rules to solve the problem.
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Where, $s = \dfrac{{a + b + c}}{2}$
After finding the values of the required terms, then we will substitute the terms required and perform the required operations to find the required solution.
Complete step-by-step answer:
We know, by the tangent rule of a triangle $ABC$, we get,
$\tan \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
To find, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right)$
Therefore, substituting these values in the required equation, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$ = 1 - \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}.\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
Now, cancelling the similar terms, we get,
$ = 1 - \sqrt {\dfrac{{\left( {s - c} \right)}}{s}.\dfrac{{\left( {s - c} \right)}}{s}} $
$ = 1 - \sqrt {\dfrac{{{{\left( {s - c} \right)}^2}}}{{{s^2}}}} $
Therefore, taking the square root, we get,
$ = 1 - \dfrac{{\left( {s - c} \right)}}{s}$
Now, dividing the numerator by the denominator, we get,
$ = 1 - \left( {1 - \dfrac{c}{s}} \right)$
Now, opening the brackets, we get,
$ = 1 - 1 + \dfrac{c}{s}$
$ = \dfrac{c}{s}$
We know, $s = \dfrac{{a + b + c}}{2}$.
Therefore, substituting this value, we get,
$ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}$
We can also write it as,
$ = \dfrac{{2c}}{{a + b + c}}$
Therefore, $1 - \tan \left( {\dfrac{A}{2}} \right)\tan \left( {\dfrac{B}{2}} \right) = \dfrac{{2c}}{{a + b + c}}$, the correct option is 1.
So, the correct answer is “Option 1”.
Note: Here, in this question we used the tangent rule, but along with the tangent rules, there are also other rules like the sine and cosine rule, that says,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
This is the sine rule.
And, $\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}$
$\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}$
$\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}$
This is the cosine rule.
So, on the basis of the question and as per requirement we can use these rules to solve the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

