
In a new system of units, the unit of mass is 10 kg, unit of length is 1 km and unit of time is 1 minute. The value of one joule in this new hypothetical system is:
(A) \[3.6 \times {10^{ - 4}}\] new units
(B) \[6 \times {10^7}\] new units
(C) \[{10^{11}}\] new units
(D) \[1.67 \times {10^4}\] new units
Answer
576.3k+ views
Hint:Find the unit and dimension of joule in current S.I system. Express the new units and dimension for joule as per given in the question. Take the ratio of dimension of current unit system and new unit system for 1 joule.
Complete step by step answer:
We know 1 joule is equivalent to \[1\,kg\,{m^2}{s^{ - 2}}\]. We can express the dimensions of 1 joule as follows,
\[{n_1} = \left[ {{\text{M}}_1^1\,{\text{L}}_1^2\,{\text{T}}_1^{ - 2}} \right]\]
Here, \[{M_1}\] is the mass, \[{L_1}\] is the length and \[{T_1}\] is the time in the former unit system.
Now, the dimension of joule in the new unit system can be expressed as,
\[{n_2} = \left[ {{\text{M}}_2^1\,{\text{L}}_2^2\,{\text{T}}_2^{ - 2}} \right]\]
Here, \[{M_2}\] is the mass, \[{L_2}\] is the length and \[{T_2}\] is the time in the new unit system.
Dividing \[{n_1}\] by \[{n_2}\], we get,
\[\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{\left[ {{\text{M}}_1^1\,{\text{L}}_1^2\,{\text{T}}_1^{ - 2}} \right]}}{{\left[ {{\text{M}}_2^1\,{\text{L}}_2^2\,{\text{T}}_2^{ - 2}} \right]}}\]
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{{\text{M}}_{\text{1}}}}}{{{{\text{M}}_{\text{2}}}}}} \right]^1}{\left[ {\dfrac{{{{\text{L}}_{\text{1}}}}}{{{{\text{L}}_{\text{2}}}}}} \right]^2}{\left[ {\dfrac{{{{\text{T}}_{\text{1}}}}}{{{{\text{T}}_{\text{2}}}}}} \right]^{ - 2}}\]
We know in the current S.I unit system,1 kg is the S.I unit of mass, 1 m is S.I unit of length and 1 s is the S.I unit of time. We have given that in the new unit system unit of mass is 10 kg, unit of length is 1 km and unit of time is 1 minute. Therefore, we can write the above equation as,
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{\text{1}}\,{\text{kg}}}}{{{\text{10}}\,{\text{kg}}}}} \right]^1}{\left[ {\dfrac{{{\text{1}}\,{\text{m}}}}{{{\text{1}}\,{\text{km}}}}} \right]^2}{\left[ {\dfrac{{{\text{1}}\,{\text{s}}}}{{1\min }}} \right]^{ - 2}}\]
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{\text{1}}\,{\text{kg}}}}{{{\text{10}}\,{\text{kg}}}}} \right]^1}{\left[ {\dfrac{{{\text{1}}\,{\text{m}}}}{{{\text{1}}{{\text{0}}^{\text{3}}}\,{\text{m}}}}} \right]^2}{\left[ {\dfrac{{{\text{1}}\,{\text{s}}}}{{60\,\operatorname{s} }}} \right]^{ - 2}}\]
\[ \Rightarrow {n_1} = {n_2}\left( {\dfrac{1}{{10}}} \right)\left( {\dfrac{1}{{{{10}^6}}}} \right)\left( {3600} \right)\]
\[ \therefore {n_1} = {n_2}\left( {3.6 \times {{10}^{ - 4}}} \right)\]
Therefore, 1 joule would be equal to \[3.6 \times {10^{ - 4}}\] new units.So, the correct answer is option (A).
Note:If you don’t know the equivalent of 1 joule, then you can use the formula for potential energy or kinetic energy to determine the unit of energy in terms of kg, m, and s. To answer this type of question, students should remember the units and dimensions of velocity, acceleration and force. Most of the other physical parameters depend upon these terms.
Complete step by step answer:
We know 1 joule is equivalent to \[1\,kg\,{m^2}{s^{ - 2}}\]. We can express the dimensions of 1 joule as follows,
\[{n_1} = \left[ {{\text{M}}_1^1\,{\text{L}}_1^2\,{\text{T}}_1^{ - 2}} \right]\]
Here, \[{M_1}\] is the mass, \[{L_1}\] is the length and \[{T_1}\] is the time in the former unit system.
Now, the dimension of joule in the new unit system can be expressed as,
\[{n_2} = \left[ {{\text{M}}_2^1\,{\text{L}}_2^2\,{\text{T}}_2^{ - 2}} \right]\]
Here, \[{M_2}\] is the mass, \[{L_2}\] is the length and \[{T_2}\] is the time in the new unit system.
Dividing \[{n_1}\] by \[{n_2}\], we get,
\[\dfrac{{{n_1}}}{{{n_2}}} = \dfrac{{\left[ {{\text{M}}_1^1\,{\text{L}}_1^2\,{\text{T}}_1^{ - 2}} \right]}}{{\left[ {{\text{M}}_2^1\,{\text{L}}_2^2\,{\text{T}}_2^{ - 2}} \right]}}\]
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{{\text{M}}_{\text{1}}}}}{{{{\text{M}}_{\text{2}}}}}} \right]^1}{\left[ {\dfrac{{{{\text{L}}_{\text{1}}}}}{{{{\text{L}}_{\text{2}}}}}} \right]^2}{\left[ {\dfrac{{{{\text{T}}_{\text{1}}}}}{{{{\text{T}}_{\text{2}}}}}} \right]^{ - 2}}\]
We know in the current S.I unit system,1 kg is the S.I unit of mass, 1 m is S.I unit of length and 1 s is the S.I unit of time. We have given that in the new unit system unit of mass is 10 kg, unit of length is 1 km and unit of time is 1 minute. Therefore, we can write the above equation as,
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{\text{1}}\,{\text{kg}}}}{{{\text{10}}\,{\text{kg}}}}} \right]^1}{\left[ {\dfrac{{{\text{1}}\,{\text{m}}}}{{{\text{1}}\,{\text{km}}}}} \right]^2}{\left[ {\dfrac{{{\text{1}}\,{\text{s}}}}{{1\min }}} \right]^{ - 2}}\]
\[ \Rightarrow {n_1} = {n_2}{\left[ {\dfrac{{{\text{1}}\,{\text{kg}}}}{{{\text{10}}\,{\text{kg}}}}} \right]^1}{\left[ {\dfrac{{{\text{1}}\,{\text{m}}}}{{{\text{1}}{{\text{0}}^{\text{3}}}\,{\text{m}}}}} \right]^2}{\left[ {\dfrac{{{\text{1}}\,{\text{s}}}}{{60\,\operatorname{s} }}} \right]^{ - 2}}\]
\[ \Rightarrow {n_1} = {n_2}\left( {\dfrac{1}{{10}}} \right)\left( {\dfrac{1}{{{{10}^6}}}} \right)\left( {3600} \right)\]
\[ \therefore {n_1} = {n_2}\left( {3.6 \times {{10}^{ - 4}}} \right)\]
Therefore, 1 joule would be equal to \[3.6 \times {10^{ - 4}}\] new units.So, the correct answer is option (A).
Note:If you don’t know the equivalent of 1 joule, then you can use the formula for potential energy or kinetic energy to determine the unit of energy in terms of kg, m, and s. To answer this type of question, students should remember the units and dimensions of velocity, acceleration and force. Most of the other physical parameters depend upon these terms.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

