
In a lottery there are 10 prizes and 25 blanks. What is the probability of getting a prize?
Answer
618k+ views
Hint: Here, we will proceed by using the general formula for calculating the probability of occurrence of an event i.e., Probability of occurrence of an event $ = \dfrac{{{\text{Number of favourable cases}}}}{{{\text{Total number of possible cases}}}}$ and here the favourable event will be getting a prize.
Complete Step-by-Step solution:
Given, Number of prizes in the lottery = 10
Number of blanks in the lottery = 25
As we know that the general formula for probability of occurrence of an event is given by
Probability of occurrence of an event $ = \dfrac{{{\text{Number of favourable cases}}}}{{{\text{Total number of possible cases}}}}{\text{ }} \to {\text{(1)}}$
Here, we have to find the probability of getting a prize so the favourable event is getting a prize.
Here, Total number of possible cases = (Number of prizes in the lottery)+(Number of blanks in the lottery)
$ \Rightarrow $Total number of possible cases = 10+25 = 35
Number of favourable cases = Number of prizes in the lottery = 10
By substituting the obtained values in equation (1), we get
Probability of getting a prize $ = \dfrac{{{\text{10}}}}{{{\text{35}}}} = \dfrac{2}{7}$
Therefore, the required probability of getting a prize in the lottery is $\dfrac{2}{7}$.
Note: In this particular event, if instead of probability of getting a prize we are asked for the probability of getting a blank (i.e., not getting any prize). For that case, the favourable event will be getting a blank from there the probability of getting a blank will be equal to $\dfrac{{25}}{{35}} = \dfrac{5}{7}$. Here, if we see carefully the sum of the probabilities of getting a prize and getting a blank will always be equal to 1.
Complete Step-by-Step solution:
Given, Number of prizes in the lottery = 10
Number of blanks in the lottery = 25
As we know that the general formula for probability of occurrence of an event is given by
Probability of occurrence of an event $ = \dfrac{{{\text{Number of favourable cases}}}}{{{\text{Total number of possible cases}}}}{\text{ }} \to {\text{(1)}}$
Here, we have to find the probability of getting a prize so the favourable event is getting a prize.
Here, Total number of possible cases = (Number of prizes in the lottery)+(Number of blanks in the lottery)
$ \Rightarrow $Total number of possible cases = 10+25 = 35
Number of favourable cases = Number of prizes in the lottery = 10
By substituting the obtained values in equation (1), we get
Probability of getting a prize $ = \dfrac{{{\text{10}}}}{{{\text{35}}}} = \dfrac{2}{7}$
Therefore, the required probability of getting a prize in the lottery is $\dfrac{2}{7}$.
Note: In this particular event, if instead of probability of getting a prize we are asked for the probability of getting a blank (i.e., not getting any prize). For that case, the favourable event will be getting a blank from there the probability of getting a blank will be equal to $\dfrac{{25}}{{35}} = \dfrac{5}{7}$. Here, if we see carefully the sum of the probabilities of getting a prize and getting a blank will always be equal to 1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

