In a laboratory, the count of bacteria in a certain experiment was increasing at a rate of 2.5% per hour. Find the bacteria at the end of 2 hours if the count was initially 5,06,000.
Last updated date: 27th Mar 2023
•
Total views: 308.4k
•
Views today: 8.85k
Answer
308.4k+ views
Hint:- For solving a given problem we use the compound interest formula. Compound interest is the interest calculated on the initial principal including the interest from the previous periods on the deposit.
Complete step-by-step solution -
Given: Initial count of bacteria(P) = 5,06,000, Increasing rate of bacteria(R)=2.5% ,Time = 2 hours
After two hours , the amount of bacteria can be given by using the compound interest formula i.e. \[{\text{Amount = P}}{\left( {1 + \dfrac{{\text{R}}}{{100}}} \right)^{\text{n}}}\] , where n is the time. Putting the values in the equation , we get
\[{\text{Amount = 506000}}{\left( {1 + \dfrac{{2.5}}{{100}}} \right)^2}\]
\[{\text{Amount = 506000}}{\left( {1 + 0.025} \right)^2}\]
\[{\text{Amount = 506000}} \times {\text{1}}{\text{.050625}}\]
\[{\text{Amount = }}\]531616.25
Hence, the number of bacteria present at the end of 2 hours will be approximately 5,31,616.
Note:- In these types of questions , the key point is to understand whether a simple interest or compound interest formula is required. In case of simple interest the principle remains constant for all periods.
Complete step-by-step solution -
Given: Initial count of bacteria(P) = 5,06,000, Increasing rate of bacteria(R)=2.5% ,Time = 2 hours
After two hours , the amount of bacteria can be given by using the compound interest formula i.e. \[{\text{Amount = P}}{\left( {1 + \dfrac{{\text{R}}}{{100}}} \right)^{\text{n}}}\] , where n is the time. Putting the values in the equation , we get
\[{\text{Amount = 506000}}{\left( {1 + \dfrac{{2.5}}{{100}}} \right)^2}\]
\[{\text{Amount = 506000}}{\left( {1 + 0.025} \right)^2}\]
\[{\text{Amount = 506000}} \times {\text{1}}{\text{.050625}}\]
\[{\text{Amount = }}\]531616.25
Hence, the number of bacteria present at the end of 2 hours will be approximately 5,31,616.
Note:- In these types of questions , the key point is to understand whether a simple interest or compound interest formula is required. In case of simple interest the principle remains constant for all periods.
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
