Answer
Verified
429.6k+ views
Hint: We should know Dalton’s law of partial pressure and its application might help in better understanding of this concept. In order to solve this question, we should know the formula to calculate the volume percentage.
Complete step by step:
Firstly the partial pressure of gas is given by Roault’s law which states that the partial pressure of any volatile component of a solution at any temperature, is equal to the vapour pressure of the pure components multiplied by the mole fraction of that component in the solution.
According to this law, partial pressure of a component is given by:
\[{P_x} = {x_x}P_x^ \circ \]
Where, ${p_x}$=partial pressure of component
$p_x^ \circ $ ${X_x}$ = mole fraction of component X
$p_x^ \circ $ = vapour pressure of pure component X.
Let ${P_A}$,${P_B}$ be the partial pressure of components A and B:
Partial pressure of the component A: \[{P_x} = {x_x}P_x^ \circ \]
Partial pressure of the component B: \[{P_B} = {x_B}P_B^ \circ \]
Let me introduce Dalton’s law of partial pressure which states that "total vapour pressure is equal to sum of partial pressure of all the components".
According to Dalton’s law of partial pressure: \[p = {p_A} + {p_B}\]
\[p = {p_A} + {p_B}\]
This is the main concept behind this question.
In the question already the partial pressure of each component are given, so we have to find out the total vapour pressure using Dalton’s law of partial pressure:
\[p = {p_{{H_2}}} + {P_{C{H_4}}} + {P_{C{O_2}}} + {P_{{C_2}{H_4}}}\]
\[P = 150 + 300 + 200 + 100\]
\[P = 750\]Torr
The volume percentage of a gas in mixture of gas is equation pressure of the particular gas divide by the total vapour pressure:
Volume % of a component = \[\dfrac{{partial{\text{ }}pressure{\text{ }}of{\text{ }}a{\text{ }}component\;}}{{Total{\text{ }}pressure}} \times 100\]
\[Volume{\text{ }}\% \;\;of\;{H_2} = \dfrac{{150}}{{750}} \times 100\]
Volume % of ${H_2}$= 20%
Thus, Option D is the correct answer.
Note: The Roaullt's law and the Dalton's law of partial pressure is very important remember, because it has many applications in solutions chapter. Dalton's law of partial pressure is based on Roault's law. Always while calculating the percentage of anything don't forget to multiply it by 100.
Complete step by step:
Firstly the partial pressure of gas is given by Roault’s law which states that the partial pressure of any volatile component of a solution at any temperature, is equal to the vapour pressure of the pure components multiplied by the mole fraction of that component in the solution.
According to this law, partial pressure of a component is given by:
\[{P_x} = {x_x}P_x^ \circ \]
Where, ${p_x}$=partial pressure of component
$p_x^ \circ $ ${X_x}$ = mole fraction of component X
$p_x^ \circ $ = vapour pressure of pure component X.
Let ${P_A}$,${P_B}$ be the partial pressure of components A and B:
Partial pressure of the component A: \[{P_x} = {x_x}P_x^ \circ \]
Partial pressure of the component B: \[{P_B} = {x_B}P_B^ \circ \]
Let me introduce Dalton’s law of partial pressure which states that "total vapour pressure is equal to sum of partial pressure of all the components".
According to Dalton’s law of partial pressure: \[p = {p_A} + {p_B}\]
\[p = {p_A} + {p_B}\]
This is the main concept behind this question.
In the question already the partial pressure of each component are given, so we have to find out the total vapour pressure using Dalton’s law of partial pressure:
\[p = {p_{{H_2}}} + {P_{C{H_4}}} + {P_{C{O_2}}} + {P_{{C_2}{H_4}}}\]
\[P = 150 + 300 + 200 + 100\]
\[P = 750\]Torr
The volume percentage of a gas in mixture of gas is equation pressure of the particular gas divide by the total vapour pressure:
Volume % of a component = \[\dfrac{{partial{\text{ }}pressure{\text{ }}of{\text{ }}a{\text{ }}component\;}}{{Total{\text{ }}pressure}} \times 100\]
\[Volume{\text{ }}\% \;\;of\;{H_2} = \dfrac{{150}}{{750}} \times 100\]
Volume % of ${H_2}$= 20%
Thus, Option D is the correct answer.
Note: The Roaullt's law and the Dalton's law of partial pressure is very important remember, because it has many applications in solutions chapter. Dalton's law of partial pressure is based on Roault's law. Always while calculating the percentage of anything don't forget to multiply it by 100.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE