
In a $\Delta ABC$$\sin A - \cos B = \cos C$, the angle $B$ is
$
{\text{A}}{\text{. }}\dfrac{\pi }{2} \\
{\text{B}}{\text{. }}\dfrac{\pi }{3} \\
{\text{C}}{\text{. }}\dfrac{\pi }{4} \\
{\text{D}}{\text{. }}\dfrac{\pi }{6} \\
$
Answer
590.4k+ views
Hint: Here it is given these are angles of a triangle so we can apply a property that the sum of all angles of a triangle is ${180^0}$ and use formula to proceed further.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

