
In a $\Delta ABC$$\sin A - \cos B = \cos C$, the angle $B$ is
$
{\text{A}}{\text{. }}\dfrac{\pi }{2} \\
{\text{B}}{\text{. }}\dfrac{\pi }{3} \\
{\text{C}}{\text{. }}\dfrac{\pi }{4} \\
{\text{D}}{\text{. }}\dfrac{\pi }{6} \\
$
Answer
597k+ views
Hint: Here it is given these are angles of a triangle so we can apply a property that the sum of all angles of a triangle is ${180^0}$ and use formula to proceed further.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

