
In a $\Delta ABC$$\sin A - \cos B = \cos C$, the angle $B$ is
$
{\text{A}}{\text{. }}\dfrac{\pi }{2} \\
{\text{B}}{\text{. }}\dfrac{\pi }{3} \\
{\text{C}}{\text{. }}\dfrac{\pi }{4} \\
{\text{D}}{\text{. }}\dfrac{\pi }{6} \\
$
Answer
615.6k+ views
Hint: Here it is given these are angles of a triangle so we can apply a property that the sum of all angles of a triangle is ${180^0}$ and use formula to proceed further.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Complete step-by-step answer:
From given
$\sin A = \cos B + \cos C$
Now using formula $\left( {\sin A = 2\sin \dfrac{A}{2}.\cos \dfrac{A}{2}} \right)$ and $\left( {\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}.\cos \dfrac{{C - D}}{2}} \right)$ we get
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {\dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
We know the sum of all angles of a triangle is ${180^0}$. So,$A + B + C = {180^0}$$\left( {\therefore \dfrac{{B + C}}{2} = {{90}^0} - \dfrac{A}{2}} \right)$
Now our question becomes,
$2\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = 2\cos \left( {{{90}^0} - \dfrac{A}{2}} \right)\cos \left( {\dfrac{{B - C}}{2}} \right)$
$\left( {\because \cos \left( {{{90}^0} - \dfrac{A}{2}} \right) = \sin \dfrac{A}{2}} \right)$ We get,
$\sin \dfrac{A}{2}.\cos \dfrac{A}{2} = \sin \dfrac{A}{2}.\cos \left( {\dfrac{{B - C}}{2}} \right)$$ \Rightarrow \sin \dfrac{A}{2}\left[ {\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right)} \right] = 0$
$\because \sin \dfrac{A}{2} \ne 0$ because any angle of triangle can’t be equal to zero. So
$\cos \dfrac{A}{2} - \cos \left( {\dfrac{{B - C}}{2}} \right) = 0$
Now we know $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right).\sin \left( {\dfrac{{B - A}}{2}} \right)$ using this formula we get,
$2\sin \left( {\dfrac{{A + B - C}}{4}} \right)\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$. SO,
Either $\sin \left( {\dfrac{{A + B - C}}{4}} \right) = 0$ or $\sin \left( {\dfrac{{B - C - A}}{4}} \right) = 0$
We know if $\sin \theta = 0 \Rightarrow \theta = 0$.
So, $\dfrac{{A + B - C}}{4} = 0 \Rightarrow A + B = C$ and $\dfrac{{B - C - A}}{4} = 0 \Rightarrow A + C = B$ $ \ldots \left( 1 \right)$
We know: $A + B + C = {180^0}$ on the value of the equation $\left( 1 \right)$ we get.
$2B = {180^0} \Rightarrow B = {90^0}$
Hence option $A = \dfrac{\pi }{2}$ is the correct option.
Note: Whenever you get these types of questions the key concept of solving is you have to start from given and you have to use standard results to solve further so if you want to solve these questions you should have remembered all the results.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

