
In a ${{\Delta ABC,}}\;{\text{if}}\;\left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
{\text{1}}&{\text{1}}&{\text{1}}
\end{array}} \right| = 0,$ then the triangle must be
A. Equilateral
B. Isosceles
C. Right angled
D. Scalene
Answer
543.3k+ views
Hint: Firstly, simplify the determinant by making elements of a row zero as much as possible and then open the determinant and solve it. Solve it using trigonometric relations, and you will finally get some condition between the angles, through that condition choose the answer from given options.
Complete step by step answer:
In order to find if the given triangle ABC is either equilateral or isosceles or right angled or scalene, we will use the given information in the question that is
$\left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
{\text{1}}&{\text{1}}&{\text{1}}
\end{array}} \right| = 0$
Simplifying this determinant by applying column operation as follows
Operating ${{\text{C}}_{\text{1}}} - {{\text{C}}_{\text{2}}}\;{\text{and}}\;{{\text{C}}_{\text{2}}} - {{\text{C}}_{\text{3}}}$ we will get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
{{\text{1}} - 1}&{{\text{1}} - 1}&{\text{1}}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\]
Now from the trigonometric relation of tangent and cotangent, we know that they are multiplicative inverse of each other, that is $\cot x = \dfrac{1}{{\tan x}}$
Using this to convert cotangents present in the equation into tangent, we will get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{\dfrac{{\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{{\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}}}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\]
Now taking \[{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}\;{\text{and}}\;{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}\] common from column one and column two respectively, we will get
\[ \Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
1&1&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0\]
Now, expanding the determinant across row three, we will get
\[ \Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0\]
Simplifying it further we will get
\[
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\]
Now, if we separately equate the above three terms to zero we will get
\[
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\Rightarrow \tan \dfrac{{\text{B}}}{{\text{2}}} = \tan \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow \dfrac{{\text{B}}}{{\text{2}}} = \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow {\text{B}} = {\text{A}} \\
\]
Similarly,
${\text{B}} = {\text{C}}\;{\text{or}}\;{\text{C}} = {\text{A}}$
So, there is a chance of holding true for all three conditions, but we are sure that either of the three possibilities is true, that is either of the two angles of the triangle are equal.
$\therefore $ Option B is correct.
Note: In order to simplify the matrix or determinant, always approach the matrix either via row or column. Using column and row both can lead you to lengthy and wrong solutions. Always try to make all the elements zero of a row or column.
Complete step by step answer:
In order to find if the given triangle ABC is either equilateral or isosceles or right angled or scalene, we will use the given information in the question that is
$\left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
{\text{1}}&{\text{1}}&{\text{1}}
\end{array}} \right| = 0$
Simplifying this determinant by applying column operation as follows
Operating ${{\text{C}}_{\text{1}}} - {{\text{C}}_{\text{2}}}\;{\text{and}}\;{{\text{C}}_{\text{2}}} - {{\text{C}}_{\text{3}}}$ we will get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
{{\text{1}} - 1}&{{\text{1}} - 1}&{\text{1}}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\text{cot}}\dfrac{{\text{A}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\]
Now from the trigonometric relation of tangent and cotangent, we know that they are multiplicative inverse of each other, that is $\cot x = \dfrac{1}{{\tan x}}$
Using this to convert cotangents present in the equation into tangent, we will get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{\dfrac{{\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{{\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}}}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
{{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}}&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0 \\
\]
Now taking \[{\text{tan}}\dfrac{{\text{B}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}\;{\text{and}}\;{\text{tan}}\dfrac{{\text{C}}}{{\text{2}}} - {\text{tan}}\dfrac{{\text{B}}}{{\text{2}}}\] common from column one and column two respectively, we will get
\[ \Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}}&{\dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}}&{{\text{cot}}\dfrac{{\text{C}}}{{\text{2}}}} \\
1&1&{{\text{tan}}\dfrac{{\text{A}}}{{\text{2}}}{\text{ + tan}}\dfrac{{\text{B}}}{{\text{2}}}} \\
0&0&{\text{1}}
\end{array}} \right| = 0\]
Now, expanding the determinant across row three, we will get
\[ \Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{1}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{1}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0\]
Simplifying it further we will get
\[
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}} - \dfrac{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}}}{{\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\dfrac{{\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}}}{{\tan \dfrac{{\text{A}}}{{\text{2}}}\tan \dfrac{{\text{B}}}{{\text{2}}}\tan \dfrac{{\text{C}}}{{\text{2}}}}}} \right) = 0 \\
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{B}}}{{\text{2}}}} \right)\left( {\tan \dfrac{{\text{C}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\]
Now, if we separately equate the above three terms to zero we will get
\[
\Rightarrow \left( {\tan \dfrac{{\text{B}}}{{\text{2}}} - \tan \dfrac{{\text{A}}}{{\text{2}}}} \right) = 0 \\
\Rightarrow \tan \dfrac{{\text{B}}}{{\text{2}}} = \tan \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow \dfrac{{\text{B}}}{{\text{2}}} = \dfrac{{\text{A}}}{{\text{2}}} \\
\Rightarrow {\text{B}} = {\text{A}} \\
\]
Similarly,
${\text{B}} = {\text{C}}\;{\text{or}}\;{\text{C}} = {\text{A}}$
So, there is a chance of holding true for all three conditions, but we are sure that either of the three possibilities is true, that is either of the two angles of the triangle are equal.
$\therefore $ Option B is correct.
Note: In order to simplify the matrix or determinant, always approach the matrix either via row or column. Using column and row both can lead you to lengthy and wrong solutions. Always try to make all the elements zero of a row or column.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Draw the diagram showing the germination of pollen class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

Write the different structural and functional differences class 12 chemistry CBSE

Explain the process of emasculation and bagging of class 12 biology CBSE

Ketones react with MgHg over water and give A Alcohols class 12 chemistry CBSE

Monosomy and trisomy can be represented as A 2n + 1 class 12 biology CBSE

