
In a $\Delta ABC$, if $\left| {\begin{array}{*{20}{c}}
1&a&b \\
1&c&a \\
1&b&c
\end{array}} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
A) $\dfrac{4}{9}$
B) $\dfrac{9}{4}$
C) $\dfrac{{3\sqrt 3 }}{2}$
Answer
578.7k+ views
Hint: First find the value of the determinant. Then multiply the value of determinant by 2 and try to make the formula of ${\left( {a - b} \right)^2},{\left( {b - c} \right)^2},{\left( {c - a} \right)^2}$.
By solving the given equation, then you will get $a = b = c$, which is possible in an equilateral triangle only. After that substitute the value of A, B, and C in the equation and simplify it to get the desired result.
Complete step-by-step answer:
Given: - $\left| {\begin{array}{*{20}{c}}
1&a&b \\
1&c&a \\
1&b&c
\end{array}} \right| = 0$
Take L.H.S. and simplify it.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&b \\
1&c&a \\
1&b&c
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
${R_2} \to {R_2} - {R_1}$
${R_3} \to {R_3} - {R_1}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&b \\
0&{c - a}&{a - b} \\
0&{b - a}&{c - b}
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$ \Rightarrow 1\left( {\left| {\begin{array}{*{20}{c}}
{c - a}&{a - b} \\
{b - a}&{c - b}
\end{array}} \right|} \right) - 0 + 0$
Solve the determinant inside the bracket,
$ \Rightarrow \left( {c - a} \right)\left( {c - b} \right) - \left( {a - b} \right)\left( {b - a} \right)$
Multiply the terms in the brackets,
$ \Rightarrow \left( {{c^2} - ac - bc + ab} \right) - \left( {ab - {b^2} - {a^2} + ab} \right)$
Open the brackets and change the sign accordingly,
$ \Rightarrow {c^2} - ac - bc + ab - ab + {b^2} + {a^2} - ab$
Now, equate it with R.H.S.,
$ \Rightarrow {a^2} + {b^2} + {c^2} - ab - bc - ac = 0$
Multiply the terms by 2,
$ \Rightarrow 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0$
Solving it further, we get the equation as,
$ \Rightarrow {a^2} + {a^2} + {b^2} + {b^2} + {c^2} + {c^2} - 2ab - 2bc - 2ca = 0$
Group the terms,
$ \Rightarrow \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ca +
{a^2}} \right) = 0$ ….. (1)
As we know the formula,
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${\left( {b - c} \right)^2} = {b^2} - 2bc + {c^2}$
${\left( {c - a} \right)^2} = {c^2} - 2ca + {a^2}$
Putting the values of equation (1) in the obtained equation we get the new equation as:
$ \Rightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0$
Since the sum of the square is zero then each term should be zero. Then,
$ \Rightarrow {\left( {a - b} \right)^2} = 0,{\left( {b - c} \right)^2} = 0,{\left( {c - a} \right)^2} = 0$
Take the square root on both sides,
$ \Rightarrow \left( {a - b} \right) = 0,\left( {b - c} \right) = 0,\left( {c - a} \right) = 0$
Move one variable to the other side,
$ \Rightarrow a = b,b = c,c = a$
The above-shown condition is only possible when,
$ \Rightarrow a = b = c$
So, the triangle is equilateral. All angles will be equal,
$ \Rightarrow \angle A = \angle B = \angle C = 60^\circ $
Now, substitute the value of A, B, and C in the equation,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = {\sin ^2}60^\circ + {\sin ^2}60^\circ + {\sin
^2}60^\circ $
Add the terms on the right side,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 3{\sin ^2}60^\circ $
Substitute the value of $\sin 60^\circ $,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 3{\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}$
Square the term and multiply,
\[\therefore \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{9}{4}\]
Hence, option (B) is the correct answer.
Note: Whenever you are stuck with these types of problems you should always think about which identity, we can use so that we can prove what has been asked like here we have to make the given equation such that we can use the formula of ${\left( {a - b} \right)^2}$. Proceeding like this will make your solution correct.
By solving the given equation, then you will get $a = b = c$, which is possible in an equilateral triangle only. After that substitute the value of A, B, and C in the equation and simplify it to get the desired result.
Complete step-by-step answer:
Given: - $\left| {\begin{array}{*{20}{c}}
1&a&b \\
1&c&a \\
1&b&c
\end{array}} \right| = 0$
Take L.H.S. and simplify it.
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&b \\
1&c&a \\
1&b&c
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
${R_2} \to {R_2} - {R_1}$
${R_3} \to {R_3} - {R_1}$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&b \\
0&{c - a}&{a - b} \\
0&{b - a}&{c - b}
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$ \Rightarrow 1\left( {\left| {\begin{array}{*{20}{c}}
{c - a}&{a - b} \\
{b - a}&{c - b}
\end{array}} \right|} \right) - 0 + 0$
Solve the determinant inside the bracket,
$ \Rightarrow \left( {c - a} \right)\left( {c - b} \right) - \left( {a - b} \right)\left( {b - a} \right)$
Multiply the terms in the brackets,
$ \Rightarrow \left( {{c^2} - ac - bc + ab} \right) - \left( {ab - {b^2} - {a^2} + ab} \right)$
Open the brackets and change the sign accordingly,
$ \Rightarrow {c^2} - ac - bc + ab - ab + {b^2} + {a^2} - ab$
Now, equate it with R.H.S.,
$ \Rightarrow {a^2} + {b^2} + {c^2} - ab - bc - ac = 0$
Multiply the terms by 2,
$ \Rightarrow 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0$
Solving it further, we get the equation as,
$ \Rightarrow {a^2} + {a^2} + {b^2} + {b^2} + {c^2} + {c^2} - 2ab - 2bc - 2ca = 0$
Group the terms,
$ \Rightarrow \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ca +
{a^2}} \right) = 0$ ….. (1)
As we know the formula,
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${\left( {b - c} \right)^2} = {b^2} - 2bc + {c^2}$
${\left( {c - a} \right)^2} = {c^2} - 2ca + {a^2}$
Putting the values of equation (1) in the obtained equation we get the new equation as:
$ \Rightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0$
Since the sum of the square is zero then each term should be zero. Then,
$ \Rightarrow {\left( {a - b} \right)^2} = 0,{\left( {b - c} \right)^2} = 0,{\left( {c - a} \right)^2} = 0$
Take the square root on both sides,
$ \Rightarrow \left( {a - b} \right) = 0,\left( {b - c} \right) = 0,\left( {c - a} \right) = 0$
Move one variable to the other side,
$ \Rightarrow a = b,b = c,c = a$
The above-shown condition is only possible when,
$ \Rightarrow a = b = c$
So, the triangle is equilateral. All angles will be equal,
$ \Rightarrow \angle A = \angle B = \angle C = 60^\circ $
Now, substitute the value of A, B, and C in the equation,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = {\sin ^2}60^\circ + {\sin ^2}60^\circ + {\sin
^2}60^\circ $
Add the terms on the right side,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 3{\sin ^2}60^\circ $
Substitute the value of $\sin 60^\circ $,
$ \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = 3{\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}$
Square the term and multiply,
\[\therefore \Rightarrow {\sin ^2}A + {\sin ^2}B + {\sin ^2}C = \dfrac{9}{4}\]
Hence, option (B) is the correct answer.
Note: Whenever you are stuck with these types of problems you should always think about which identity, we can use so that we can prove what has been asked like here we have to make the given equation such that we can use the formula of ${\left( {a - b} \right)^2}$. Proceeding like this will make your solution correct.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

