
In a $\Delta ABC$ , if $\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}$ and $\sin A\sin B\sin C = \dfrac{{3 + \sqrt 3 }}{8}$ , then the value of $\tan A\tan B + \tan B\tan C + \tan C\tan A$ is
Answer
575.1k+ views
Hint: To find the value, we convert all the terms of the given equation into the form of sin and cos functions using the definition of $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, such that the given values of sin and cos functions can be used.
Complete step-by-step answer:
Given Data,
$\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}$ and $\sin A\sin B\sin C = \dfrac{{3 + \sqrt 3 }}{8}$ .
Now, we have to find the value of $\tan A\tan B + \tan B\tan C + \tan C\tan A$
As we know the value of tangent of an angle in terms of sine and cosine is given as:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
So, let us substitute the value in the above function.
$
= \tan A\tan B + \tan B\tan C + \tan C\tan A \\
= \dfrac{{\sin A}}{{\cos A}}\dfrac{{\sin B}}{{\cos B}} + \dfrac{{\sin B}}{{\cos B}}\dfrac{{\sin C}}{{\cos C}} + \dfrac{{\sin C}}{{\cos C}}\dfrac{{\sin A}}{{\cos A}} \\
$
Let us now take the LCM to solve further.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\sin B\cos A + \sin A\sin C\cos B}}{{\cos A\cos B\cos C}}$
Now let us take some term common in the numerator to solve further by the use of formula.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\left( {\sin B\cos A + \sin A\cos B} \right)}}{{\cos A\cos B\cos C}}$
As we know that the formula for sum of the sine of the angle is given as:
$ \Rightarrow \sin \left( {x + y} \right) = \sin x\cos y + \sin y\cos x$
Let us use the above formula in the above term to solve further.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\sin \left( {A + B} \right)}}{{\cos A\cos B\cos C}}$
Given that angle A, B and C are part of the triangle so we have the relation between the angles of the triangle given as:
$
\Rightarrow A + B + C = {180^0} \\
\Rightarrow A + B = {180^0} - C \\
\Rightarrow \sin \left( {A + B} \right) = \sin \left( {{{180}^0} - C} \right) \\
\Rightarrow \sin \left( {A + B} \right) = \sin C - - - - \left( 1 \right){\text{ }}\left[ {\because \sin \left( {{{180}^0} - \theta } \right) = \sin \theta } \right] \\
\Rightarrow \cos \left( {A + B} \right) = \cos \left( {{{180}^0} - C} \right) \\
\Rightarrow \cos \left( {A + B} \right) = - \cos C - - - - \left( 2 \right){\text{ }}\left[ {\because \cos \left( {{{180}^0} - \theta } \right) = \cos \theta } \right] \\
$
Let us substitute this result from equation (1) in the given term.
$
= \dfrac{{\sin A\sin B\cos C + \sin C\sin C}}{{\cos A\cos B\cos C}}\;{\text{ }}\left[ {\because \sin \left( {A + B} \right) = \sin C} \right] \\
= \dfrac{{\sin A\sin B\cos C + {{\sin }^2}C}}{{\cos A\cos B\cos C}} \\
$
We know the identity
$
{\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \\
$
Let us substitute this in the above problem and let us take some common terms in the numerator.
$
= \dfrac{{\sin A\sin B\cos C + 1 - {{\cos }^2}C}}{{\cos A\cos B\cos C}} \\
= \dfrac{{1 + \cos C\left( { - \cos C + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}} \\
$
Let us substitute the value from equation (2) in the above equation.
\[
= \dfrac{{1 + \cos C\left( {\cos \left( {A + B} \right) + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = - \cos C} \right] \\
= \dfrac{{1 + \cos C\left( {\cos A\cos B - \sin A\sin B + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right] \\
= \dfrac{{1 + \cos C\left( {\cos A\cos B} \right)}}{{\cos A\cos B\cos C}} \\
= \dfrac{1}{{\cos A\cos B\cos C}} + 1 \\
\]
Now let us substitute the value of terms given in the problem to find the final value.
\[ \Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + 1 = \dfrac{1}{{\left( {\dfrac{{\sqrt 3 - 1}}{8}} \right)}} + 1{\text{ }}\left[ {\because \cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}} \right]\]
Let us now simplify the term.
\[
= \dfrac{{8 + \sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
= \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\
\Rightarrow \tan A\tan B + \tan B\tan C + \tan C\tan A = \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\
\]
Hence, the value of $\tan A\tan B + \tan B\tan C + \tan C\tan A$ is \[\dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}}\]
Note: In order to solve problems of this type the key is to observe that as the given angles are of a triangle $\sin \left( {A + B} \right) = \sin C$ , as the sum of angles in a triangle is 180 degrees. Adequate knowledge in the trigonometric conversions and formulae is required to re-arrange the given equation and simplify.
Complete step-by-step answer:
Given Data,
$\cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}$ and $\sin A\sin B\sin C = \dfrac{{3 + \sqrt 3 }}{8}$ .
Now, we have to find the value of $\tan A\tan B + \tan B\tan C + \tan C\tan A$
As we know the value of tangent of an angle in terms of sine and cosine is given as:
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
So, let us substitute the value in the above function.
$
= \tan A\tan B + \tan B\tan C + \tan C\tan A \\
= \dfrac{{\sin A}}{{\cos A}}\dfrac{{\sin B}}{{\cos B}} + \dfrac{{\sin B}}{{\cos B}}\dfrac{{\sin C}}{{\cos C}} + \dfrac{{\sin C}}{{\cos C}}\dfrac{{\sin A}}{{\cos A}} \\
$
Let us now take the LCM to solve further.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\sin B\cos A + \sin A\sin C\cos B}}{{\cos A\cos B\cos C}}$
Now let us take some term common in the numerator to solve further by the use of formula.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\left( {\sin B\cos A + \sin A\cos B} \right)}}{{\cos A\cos B\cos C}}$
As we know that the formula for sum of the sine of the angle is given as:
$ \Rightarrow \sin \left( {x + y} \right) = \sin x\cos y + \sin y\cos x$
Let us use the above formula in the above term to solve further.
$ = \dfrac{{\sin A\sin B\cos C + \sin C\sin \left( {A + B} \right)}}{{\cos A\cos B\cos C}}$
Given that angle A, B and C are part of the triangle so we have the relation between the angles of the triangle given as:
$
\Rightarrow A + B + C = {180^0} \\
\Rightarrow A + B = {180^0} - C \\
\Rightarrow \sin \left( {A + B} \right) = \sin \left( {{{180}^0} - C} \right) \\
\Rightarrow \sin \left( {A + B} \right) = \sin C - - - - \left( 1 \right){\text{ }}\left[ {\because \sin \left( {{{180}^0} - \theta } \right) = \sin \theta } \right] \\
\Rightarrow \cos \left( {A + B} \right) = \cos \left( {{{180}^0} - C} \right) \\
\Rightarrow \cos \left( {A + B} \right) = - \cos C - - - - \left( 2 \right){\text{ }}\left[ {\because \cos \left( {{{180}^0} - \theta } \right) = \cos \theta } \right] \\
$
Let us substitute this result from equation (1) in the given term.
$
= \dfrac{{\sin A\sin B\cos C + \sin C\sin C}}{{\cos A\cos B\cos C}}\;{\text{ }}\left[ {\because \sin \left( {A + B} \right) = \sin C} \right] \\
= \dfrac{{\sin A\sin B\cos C + {{\sin }^2}C}}{{\cos A\cos B\cos C}} \\
$
We know the identity
$
{\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \\
$
Let us substitute this in the above problem and let us take some common terms in the numerator.
$
= \dfrac{{\sin A\sin B\cos C + 1 - {{\cos }^2}C}}{{\cos A\cos B\cos C}} \\
= \dfrac{{1 + \cos C\left( { - \cos C + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}} \\
$
Let us substitute the value from equation (2) in the above equation.
\[
= \dfrac{{1 + \cos C\left( {\cos \left( {A + B} \right) + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = - \cos C} \right] \\
= \dfrac{{1 + \cos C\left( {\cos A\cos B - \sin A\sin B + \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}{\text{ }}\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right] \\
= \dfrac{{1 + \cos C\left( {\cos A\cos B} \right)}}{{\cos A\cos B\cos C}} \\
= \dfrac{1}{{\cos A\cos B\cos C}} + 1 \\
\]
Now let us substitute the value of terms given in the problem to find the final value.
\[ \Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + 1 = \dfrac{1}{{\left( {\dfrac{{\sqrt 3 - 1}}{8}} \right)}} + 1{\text{ }}\left[ {\because \cos A\cos B\cos C = \dfrac{{\sqrt 3 - 1}}{8}} \right]\]
Let us now simplify the term.
\[
= \dfrac{{8 + \sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
= \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\
\Rightarrow \tan A\tan B + \tan B\tan C + \tan C\tan A = \dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}} \\
\]
Hence, the value of $\tan A\tan B + \tan B\tan C + \tan C\tan A$ is \[\dfrac{{7 + \sqrt 3 }}{{\sqrt 3 - 1}}\]
Note: In order to solve problems of this type the key is to observe that as the given angles are of a triangle $\sin \left( {A + B} \right) = \sin C$ , as the sum of angles in a triangle is 180 degrees. Adequate knowledge in the trigonometric conversions and formulae is required to re-arrange the given equation and simplify.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

