
In a $\Delta ABC$, a, b, c are the sides of the triangle opposite to the angles A,B,C, respectively.
Then, the value of ${a^3}\sin \left( {B - C} \right) + {b^3}\sin \left( {C - A} \right) + {c^3}\sin \left( {A - B} \right)$ is equal to?
A. 0
B. 1
C. 3
D. 2
Answer
615.9k+ views
Hint: Since a, b, c are sides of a triangle, we will take the first term and find the summation of it, the other two terms will be similar to the first one.
Complete step by step answer:
$\sum {{a^3}\sin \left( {B - C} \right)} $
Using the formula$\left[ {\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k} \right]$, we get,
$ \Rightarrow \sum {{k^3}{{\sin }^3}A\sin \left( {B - C} \right)} $
$ \Rightarrow \sum {{k^3}\left[ {{{\sin }^2}A\sin \left( {B + C} \right)\sin \left( {B - C} \right)} \right]} $
$\Rightarrow\sum {{k^3}\left[ {\left\{ {{{\sin }^2}A \times \dfrac{1}{2}\left( {\cos 2C - \cos 2B} \right)} \right\}} \right]} $
$\Rightarrow\sum {\dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {1 - 2{{\sin }^2}C - 1 + 2{{\sin }^2}B} \right)} \right]}$
$ \Rightarrow \sum {\dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A - 2{{\sin }^2}A{{\sin }^2}C + 2{{\sin }^2}A{{\sin }^2}B - {{\sin }^2}A} \right]} $
$ \Rightarrow \sum {\dfrac{{{k^3}}}{2}\left( 0 \right) = 0} $
So, Option A is the correct answer.
Note: We started by finding the summation of the first term and finding the value of it, this value will be the same for the second and third term as well, therefore we can perform the summation once which saves our time.
Complete step by step answer:
$\sum {{a^3}\sin \left( {B - C} \right)} $
Using the formula$\left[ {\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k} \right]$, we get,
$ \Rightarrow \sum {{k^3}{{\sin }^3}A\sin \left( {B - C} \right)} $
$ \Rightarrow \sum {{k^3}\left[ {{{\sin }^2}A\sin \left( {B + C} \right)\sin \left( {B - C} \right)} \right]} $
$\Rightarrow\sum {{k^3}\left[ {\left\{ {{{\sin }^2}A \times \dfrac{1}{2}\left( {\cos 2C - \cos 2B} \right)} \right\}} \right]} $
$\Rightarrow\sum {\dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A\left( {1 - 2{{\sin }^2}C - 1 + 2{{\sin }^2}B} \right)} \right]}$
$ \Rightarrow \sum {\dfrac{{{k^3}}}{2}\left[ {{{\sin }^2}A - 2{{\sin }^2}A{{\sin }^2}C + 2{{\sin }^2}A{{\sin }^2}B - {{\sin }^2}A} \right]} $
$ \Rightarrow \sum {\dfrac{{{k^3}}}{2}\left( 0 \right) = 0} $
So, Option A is the correct answer.
Note: We started by finding the summation of the first term and finding the value of it, this value will be the same for the second and third term as well, therefore we can perform the summation once which saves our time.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

