
In a clock, what is the time period of meeting the minute hand and the second hand?
A) \[59s\]
B) \[\dfrac{{60}}{{59}}s\]
C) \[\dfrac{{59}}{{60}}s\]
D) \[\dfrac{{3600}}{{59}}s\]
Answer
479.4k+ views
Hint-In the clock, the second hand, minute hand and the hour hand are rotating in the angular velocity. Here, we have to consider only the second hand and the minute hand. The second hand and the minute hand meet every second in an hour. Angular velocity is defined as the amount of time taken for the angular displacement. The angular velocity changes with the angle in which the object resides at a time $t$.
Formula used:
\[\omega = \dfrac{{2\pi }}{T}\]
Where,
\[\omega \]=the angular velocity
\[T\]=Time
\[2\pi \]=angular displacement
Complete step by step answer:
(i) Let's consider the one of the minutes in an hour, the second hand and the minute hand meet. We know $3600$ seconds in an hour and the $60$ seconds in a minute.
(ii) Let \[{\omega _1}\] and \[{\omega _2}\] are the angular velocities of the second hand and the minute hand and \[{T_1}\], \[{T_2}\] are the time period of second hand and the minute hand.
\[{\omega _1} = \dfrac{{2\pi }}{{3600}}\]; \[{\omega _2} = \dfrac{{2\pi }}{{60}}\]
(iii) \[\omega \Rightarrow \]\[{\omega _2} - {\omega _1}\]
\[ \Rightarrow \dfrac{{2\pi }}{{60}} - \dfrac{{2\pi }}{{3600}}\]
\[\omega \Rightarrow \dfrac{{2\pi \left( {59} \right)}}{{3600}}\]
(iv)To find the time of the known angular velocity,
\[\omega = \dfrac{{2\pi }}{T} \Rightarrow \] \[T = \dfrac{{2\pi }}{\omega }\]
Applying the value of \[\omega \] in the above time equation,
\[T = \dfrac{{2\pi \times 3600}}{{59 \times 2\pi }}\]
Cancelling \[2\pi \], we get
\[T = \dfrac{{3600}}{{59}}s\]
Hence the correct option is D.
Additional information:
(i) The velocity is the amount of linear displacement travelled in a period of time $t$. And its unit is metre per second. The angular velocity is the total amount of angular displacement travelled in a period of time $t$. ‘Radians per second’ is the unit of the angular velocity.
Note: The second and the minute hand meet every $60$ seconds. We can also say that the minute hand and the second hand meet every minute. We found the answer approximately equal to $60$seconds. We find this time period by evaluating the angular velocity. This describes how fast an object is moving in an orbit.
Formula used:
\[\omega = \dfrac{{2\pi }}{T}\]
Where,
\[\omega \]=the angular velocity
\[T\]=Time
\[2\pi \]=angular displacement
Complete step by step answer:
(i) Let's consider the one of the minutes in an hour, the second hand and the minute hand meet. We know $3600$ seconds in an hour and the $60$ seconds in a minute.
(ii) Let \[{\omega _1}\] and \[{\omega _2}\] are the angular velocities of the second hand and the minute hand and \[{T_1}\], \[{T_2}\] are the time period of second hand and the minute hand.
\[{\omega _1} = \dfrac{{2\pi }}{{3600}}\]; \[{\omega _2} = \dfrac{{2\pi }}{{60}}\]
(iii) \[\omega \Rightarrow \]\[{\omega _2} - {\omega _1}\]
\[ \Rightarrow \dfrac{{2\pi }}{{60}} - \dfrac{{2\pi }}{{3600}}\]
\[\omega \Rightarrow \dfrac{{2\pi \left( {59} \right)}}{{3600}}\]
(iv)To find the time of the known angular velocity,
\[\omega = \dfrac{{2\pi }}{T} \Rightarrow \] \[T = \dfrac{{2\pi }}{\omega }\]
Applying the value of \[\omega \] in the above time equation,
\[T = \dfrac{{2\pi \times 3600}}{{59 \times 2\pi }}\]
Cancelling \[2\pi \], we get
\[T = \dfrac{{3600}}{{59}}s\]
Hence the correct option is D.
Additional information:
(i) The velocity is the amount of linear displacement travelled in a period of time $t$. And its unit is metre per second. The angular velocity is the total amount of angular displacement travelled in a period of time $t$. ‘Radians per second’ is the unit of the angular velocity.
Note: The second and the minute hand meet every $60$ seconds. We can also say that the minute hand and the second hand meet every minute. We found the answer approximately equal to $60$seconds. We find this time period by evaluating the angular velocity. This describes how fast an object is moving in an orbit.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
