Answer
Verified
417.9k+ views
Hint: Average can be defined as the ratio of the sum of the observations in the given set of data to the total number of the observations. For example: The given data is \[11,{\text{ }}12,{\text{ }}13,{\text{ }}14\].
Average \[ = {\text{ }}\dfrac{{\left( {11 + 12 + 13 + 14} \right)}}{4}{\text{ }} = {\text{ }}12.5\]
In this particular problem, the average is associated with the percentages. So, we need to assume that the total number of students in the class is 100 just to make the calculation easier.
Complete step-by-step answer:
Let the total number of students in the class be \[100\].
Average marks of all the students in English is given to be \[52.25\]
According to the problem,
Number of the students in the C category = \[25\% \] of the total students \[ = {\text{ }}25\]
Average marks of the students in C category in English \[ = {\text{ }}31\]
Number of the students in the A category = \[20\% \] of the total students = \[20\]
Average marks of the students in A category in English = 80
Hence, the number of the remaining students \[ = {\text{ }}100{\text{ }}-{\text{ }}\left( {25{\text{ }} + {\text{ }}20} \right){\text{ }} = {\text{ }}100{\text{ }}-{\text{ }}45{\text{ }} = {\text{ }}55\]
Let Average marks of the remaining students in English = x
On solving,
\[ \Rightarrow \] \[52.25 \times 100{\text{ }} = {\text{ }}\left( {31 \times 25} \right){\text{ }} + {\text{ }}\left( {80 \times 20} \right){\text{ }} + {\text{ }}\left( {55 \times x} \right)\]
\[ \Rightarrow \] \[5225{\text{ }} = {\text{ }}775{\text{ }} + {\text{ }}160{\text{ }} + {\text{ }}55x\]
\[ \Rightarrow \] \[55x{\text{ }} = {\text{ }}5225{\text{ }}-{\text{ }}775{\text{ }}-{\text{ }}160\]
\[ \Rightarrow \] 55x = 2850
\[ \Rightarrow \] \[x{\text{ }} = {\text{ }}\dfrac{{2850}}{{55}}{\text{ }} = {\text{ }}51.8\]
Hence, the average marks of the remaining students in English is \[51.8\].
Note: The average is commonly known as the Mean or the Expected value.
To find the averages associated with the percentages, we always consider the total number of the observations to be 100 so that the calculations become easier.
So, on solving this problem by using the same method, 25% of the total students i.e. \[100\] becomes \[25\] in the C category and similarly, 20% of the total students i.e. \[100\] becomes \[20\] in A category and hence, we get the average marks of the remaining students in English, \[51.8\].
Average \[ = {\text{ }}\dfrac{{\left( {11 + 12 + 13 + 14} \right)}}{4}{\text{ }} = {\text{ }}12.5\]
In this particular problem, the average is associated with the percentages. So, we need to assume that the total number of students in the class is 100 just to make the calculation easier.
Complete step-by-step answer:
Let the total number of students in the class be \[100\].
Average marks of all the students in English is given to be \[52.25\]
According to the problem,
Number of the students in the C category = \[25\% \] of the total students \[ = {\text{ }}25\]
Average marks of the students in C category in English \[ = {\text{ }}31\]
Number of the students in the A category = \[20\% \] of the total students = \[20\]
Average marks of the students in A category in English = 80
Hence, the number of the remaining students \[ = {\text{ }}100{\text{ }}-{\text{ }}\left( {25{\text{ }} + {\text{ }}20} \right){\text{ }} = {\text{ }}100{\text{ }}-{\text{ }}45{\text{ }} = {\text{ }}55\]
Let Average marks of the remaining students in English = x
On solving,
\[ \Rightarrow \] \[52.25 \times 100{\text{ }} = {\text{ }}\left( {31 \times 25} \right){\text{ }} + {\text{ }}\left( {80 \times 20} \right){\text{ }} + {\text{ }}\left( {55 \times x} \right)\]
\[ \Rightarrow \] \[5225{\text{ }} = {\text{ }}775{\text{ }} + {\text{ }}160{\text{ }} + {\text{ }}55x\]
\[ \Rightarrow \] \[55x{\text{ }} = {\text{ }}5225{\text{ }}-{\text{ }}775{\text{ }}-{\text{ }}160\]
\[ \Rightarrow \] 55x = 2850
\[ \Rightarrow \] \[x{\text{ }} = {\text{ }}\dfrac{{2850}}{{55}}{\text{ }} = {\text{ }}51.8\]
Hence, the average marks of the remaining students in English is \[51.8\].
Note: The average is commonly known as the Mean or the Expected value.
To find the averages associated with the percentages, we always consider the total number of the observations to be 100 so that the calculations become easier.
So, on solving this problem by using the same method, 25% of the total students i.e. \[100\] becomes \[25\] in the C category and similarly, 20% of the total students i.e. \[100\] becomes \[20\] in A category and hence, we get the average marks of the remaining students in English, \[51.8\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE