
In a city $40\% $ of the adults are illiterate while $85\% $ of the children are literate. If the ratio of the adults to that of the children is $2:3$ then what percent of the population is literate?
A. $20\% $
B. $25\% $
C. $50\% $
D. $60\% $
E. $75\% $
Answer
510.3k+ views
Hint: Let us assume a number to convert the ratio into the number. Further, we will convert adults illiterate to literate. Thereafter, we will find a literate population, then we will calculate the percentage of the population that is literate.
Complete step by step solution:
The given ratio between the adults and the children $ = 2:3.$
Let the number of adults be $ = 2x$
And number of children be $ = 3x$
Then, $40\% $ of the adults are illiterate and $85\% $ of the children are literate.
Now, we will convert illiterate $40\% $ adults into literate then $\left( {100\% - 40\% } \right)$
$40\% $ adults into literate then $ = 60\% $
According to the given information in the question.
Literate population $ = 60\% $ of adult’s literate $ + 85\% $ of children literate.
Literate population $ = 60\% \,\,of\,2x + 85\% \,\,of\,3x$
Literate population $ = 60\% \,\, \times \,2x + 85\% \,\, \times \,3x$
Literate population $ = \dfrac{{60}}{{100}}\,\, \times \,2x + \dfrac{{85}}{{100}}\,\, \times \,3x$
Literate population $ = \dfrac{6}{{10}}\,\, \times \,2x + \dfrac{{17}}{{20}}\,\, \times \,3x$
Literate population $ = \dfrac{{6 \times \,2x}}{{10}}\,\, + \dfrac{{17 \times \,3x}}{{20}}\,\,$
Literate population $ = \dfrac{{12x}}{{10}}\,\, + \dfrac{{51x}}{{20}}\,\,$
We will take LCM of $10,20 = 20,$we have
Literate population $ = \dfrac{{2 \times 12x + 51x}}{{20}}$
Literate population $ = \dfrac{{24x + 51x}}{{20}}$
Literate population $ = \dfrac{{75x}}{{20}}$
Now, required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \left( {\dfrac{1}{{2x + 3x}}} \right) \times 100} \right]\% \]
Required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \dfrac{1}{{5x}} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{{20}}} \right) \times \dfrac{1}{5} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{2}} \right) \times \dfrac{1}{5} \times 10} \right]\% \]
Required percentage\[ = \left[ {\left( {75} \right) \times \dfrac{1}{5} \times 5} \right]\% \]
Required percentage\[ = \left[ {75} \right]\% \]
Thus, the required percentage is \[75\% \].
Hence, the correct option is E.
Note: Students must know that while you will find the literate population then you should convert adults literate and children literate.
Complete step by step solution:
The given ratio between the adults and the children $ = 2:3.$
Let the number of adults be $ = 2x$
And number of children be $ = 3x$
Then, $40\% $ of the adults are illiterate and $85\% $ of the children are literate.
Now, we will convert illiterate $40\% $ adults into literate then $\left( {100\% - 40\% } \right)$
$40\% $ adults into literate then $ = 60\% $
According to the given information in the question.
Literate population $ = 60\% $ of adult’s literate $ + 85\% $ of children literate.
Literate population $ = 60\% \,\,of\,2x + 85\% \,\,of\,3x$
Literate population $ = 60\% \,\, \times \,2x + 85\% \,\, \times \,3x$
Literate population $ = \dfrac{{60}}{{100}}\,\, \times \,2x + \dfrac{{85}}{{100}}\,\, \times \,3x$
Literate population $ = \dfrac{6}{{10}}\,\, \times \,2x + \dfrac{{17}}{{20}}\,\, \times \,3x$
Literate population $ = \dfrac{{6 \times \,2x}}{{10}}\,\, + \dfrac{{17 \times \,3x}}{{20}}\,\,$
Literate population $ = \dfrac{{12x}}{{10}}\,\, + \dfrac{{51x}}{{20}}\,\,$
We will take LCM of $10,20 = 20,$we have
Literate population $ = \dfrac{{2 \times 12x + 51x}}{{20}}$
Literate population $ = \dfrac{{24x + 51x}}{{20}}$
Literate population $ = \dfrac{{75x}}{{20}}$
Now, required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \left( {\dfrac{1}{{2x + 3x}}} \right) \times 100} \right]\% \]
Required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \dfrac{1}{{5x}} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{{20}}} \right) \times \dfrac{1}{5} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{2}} \right) \times \dfrac{1}{5} \times 10} \right]\% \]
Required percentage\[ = \left[ {\left( {75} \right) \times \dfrac{1}{5} \times 5} \right]\% \]
Required percentage\[ = \left[ {75} \right]\% \]
Thus, the required percentage is \[75\% \].
Hence, the correct option is E.
Note: Students must know that while you will find the literate population then you should convert adults literate and children literate.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
