
In a city $40\% $ of the adults are illiterate while $85\% $ of the children are literate. If the ratio of the adults to that of the children is $2:3$ then what percent of the population is literate?
A. $20\% $
B. $25\% $
C. $50\% $
D. $60\% $
E. $75\% $
Answer
576.9k+ views
Hint: Let us assume a number to convert the ratio into the number. Further, we will convert adults illiterate to literate. Thereafter, we will find a literate population, then we will calculate the percentage of the population that is literate.
Complete step by step solution:
The given ratio between the adults and the children $ = 2:3.$
Let the number of adults be $ = 2x$
And number of children be $ = 3x$
Then, $40\% $ of the adults are illiterate and $85\% $ of the children are literate.
Now, we will convert illiterate $40\% $ adults into literate then $\left( {100\% - 40\% } \right)$
$40\% $ adults into literate then $ = 60\% $
According to the given information in the question.
Literate population $ = 60\% $ of adult’s literate $ + 85\% $ of children literate.
Literate population $ = 60\% \,\,of\,2x + 85\% \,\,of\,3x$
Literate population $ = 60\% \,\, \times \,2x + 85\% \,\, \times \,3x$
Literate population $ = \dfrac{{60}}{{100}}\,\, \times \,2x + \dfrac{{85}}{{100}}\,\, \times \,3x$
Literate population $ = \dfrac{6}{{10}}\,\, \times \,2x + \dfrac{{17}}{{20}}\,\, \times \,3x$
Literate population $ = \dfrac{{6 \times \,2x}}{{10}}\,\, + \dfrac{{17 \times \,3x}}{{20}}\,\,$
Literate population $ = \dfrac{{12x}}{{10}}\,\, + \dfrac{{51x}}{{20}}\,\,$
We will take LCM of $10,20 = 20,$we have
Literate population $ = \dfrac{{2 \times 12x + 51x}}{{20}}$
Literate population $ = \dfrac{{24x + 51x}}{{20}}$
Literate population $ = \dfrac{{75x}}{{20}}$
Now, required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \left( {\dfrac{1}{{2x + 3x}}} \right) \times 100} \right]\% \]
Required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \dfrac{1}{{5x}} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{{20}}} \right) \times \dfrac{1}{5} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{2}} \right) \times \dfrac{1}{5} \times 10} \right]\% \]
Required percentage\[ = \left[ {\left( {75} \right) \times \dfrac{1}{5} \times 5} \right]\% \]
Required percentage\[ = \left[ {75} \right]\% \]
Thus, the required percentage is \[75\% \].
Hence, the correct option is E.
Note: Students must know that while you will find the literate population then you should convert adults literate and children literate.
Complete step by step solution:
The given ratio between the adults and the children $ = 2:3.$
Let the number of adults be $ = 2x$
And number of children be $ = 3x$
Then, $40\% $ of the adults are illiterate and $85\% $ of the children are literate.
Now, we will convert illiterate $40\% $ adults into literate then $\left( {100\% - 40\% } \right)$
$40\% $ adults into literate then $ = 60\% $
According to the given information in the question.
Literate population $ = 60\% $ of adult’s literate $ + 85\% $ of children literate.
Literate population $ = 60\% \,\,of\,2x + 85\% \,\,of\,3x$
Literate population $ = 60\% \,\, \times \,2x + 85\% \,\, \times \,3x$
Literate population $ = \dfrac{{60}}{{100}}\,\, \times \,2x + \dfrac{{85}}{{100}}\,\, \times \,3x$
Literate population $ = \dfrac{6}{{10}}\,\, \times \,2x + \dfrac{{17}}{{20}}\,\, \times \,3x$
Literate population $ = \dfrac{{6 \times \,2x}}{{10}}\,\, + \dfrac{{17 \times \,3x}}{{20}}\,\,$
Literate population $ = \dfrac{{12x}}{{10}}\,\, + \dfrac{{51x}}{{20}}\,\,$
We will take LCM of $10,20 = 20,$we have
Literate population $ = \dfrac{{2 \times 12x + 51x}}{{20}}$
Literate population $ = \dfrac{{24x + 51x}}{{20}}$
Literate population $ = \dfrac{{75x}}{{20}}$
Now, required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \left( {\dfrac{1}{{2x + 3x}}} \right) \times 100} \right]\% \]
Required percentage \[ = \left[ {\left( {\dfrac{{75x}}{{20}}} \right) \times \dfrac{1}{{5x}} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{{20}}} \right) \times \dfrac{1}{5} \times 100} \right]\% \]
Required percentage\[ = \left[ {\left( {\dfrac{{75}}{2}} \right) \times \dfrac{1}{5} \times 10} \right]\% \]
Required percentage\[ = \left[ {\left( {75} \right) \times \dfrac{1}{5} \times 5} \right]\% \]
Required percentage\[ = \left[ {75} \right]\% \]
Thus, the required percentage is \[75\% \].
Hence, the correct option is E.
Note: Students must know that while you will find the literate population then you should convert adults literate and children literate.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

What is the missing number in the sequence 259142027 class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

