
In a circle of radius 21cm, an arc subtends an angle of $60{}^\circ $at the centre. Find
(i) The length of the arc
(ii) Area of sector.
Answer
590.7k+ views
- Hint: Use the formula $\theta =\dfrac{l}{r}$ where $\theta $ = angle subtended by arc, l = length of the arc and r = radius of the circle. For calculating the length of the arc as ‘$\theta $’ and ‘r’ are given in question.
For finding the area of the sector use formula, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Complete step-by-step solution -
According to question, radius of the circle = 21 cm and angle subtended by arc = $60{}^\circ $.
We know, $\theta =\dfrac{l}{r}$.
First we will need to change ‘$\theta $’ and ‘r’ in their SI unit. SI unit of radius is meter and angle is radian.
As, 1m = 100cm and \[1{}^\circ =\dfrac{\pi }{180}radian,\]
\[\begin{align}
& radius=21cm=\dfrac{21}{100}=0.21m \\
& Angle\ subtended=60{}^\circ =\left( 60\times \dfrac{\pi }{180} \right)radian=\dfrac{\pi }{3} \\
\end{align}\]
Now, putting these values in the formula,
$\begin{align}
& \theta =\dfrac{l}{r} \\
& \dfrac{\pi }{3}=\dfrac{l}{0.21} \\
\end{align}$
Multiplying both sides by 0.21, we will get,
$\begin{align}
& \dfrac{\pi }{3}\times 0.21=\dfrac{l}{0.21}\times 0.21 \\
& \Rightarrow \pi \times 0.07=l \\
\end{align}$
Using $\pi =3.14$, we will get,
$\begin{align}
& \Rightarrow l=\left( 3.14\times 0.07 \right)m \\
& \Rightarrow l=0.2198m \\
& \Rightarrow l=\left( 0.2198\times 100 \right)cm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ As,\ 1m=100cm \right] \\
& \Rightarrow l=21.98cm \\
\end{align}$
Hence the required length of the arc = 21.98cm.
Now, we have to calculate area of the sector;
We know, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Putting all the values in SI unit;
$\begin{align}
& Area=\dfrac{1}{2}\times \dfrac{\pi }{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =\dfrac{1}{2}\times \dfrac{3.14}{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =0.023079{{m}^{2}} \\
\end{align}$
We know $1{{m}^{2}}={{10}^{4}}c{{m}^{2}}$
$\begin{align}
& \Rightarrow Area=\left( 0.023079\times {{10}^{4}} \right)c{{m}^{2}} \\
& \Rightarrow Area=230.79c{{m}^{2}} \\
\end{align}$
Hence, the required area of the sector $=230.79c{{m}^{2}}$.
Note: In the formulas of length of the arc and area of the sector, use all the quantities in SI unit. Don’t forget to convert angle into radian. SI unit of angle is radian.
For finding the area of the sector use formula, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Complete step-by-step solution -
According to question, radius of the circle = 21 cm and angle subtended by arc = $60{}^\circ $.
We know, $\theta =\dfrac{l}{r}$.
First we will need to change ‘$\theta $’ and ‘r’ in their SI unit. SI unit of radius is meter and angle is radian.
As, 1m = 100cm and \[1{}^\circ =\dfrac{\pi }{180}radian,\]
\[\begin{align}
& radius=21cm=\dfrac{21}{100}=0.21m \\
& Angle\ subtended=60{}^\circ =\left( 60\times \dfrac{\pi }{180} \right)radian=\dfrac{\pi }{3} \\
\end{align}\]
Now, putting these values in the formula,
$\begin{align}
& \theta =\dfrac{l}{r} \\
& \dfrac{\pi }{3}=\dfrac{l}{0.21} \\
\end{align}$
Multiplying both sides by 0.21, we will get,
$\begin{align}
& \dfrac{\pi }{3}\times 0.21=\dfrac{l}{0.21}\times 0.21 \\
& \Rightarrow \pi \times 0.07=l \\
\end{align}$
Using $\pi =3.14$, we will get,
$\begin{align}
& \Rightarrow l=\left( 3.14\times 0.07 \right)m \\
& \Rightarrow l=0.2198m \\
& \Rightarrow l=\left( 0.2198\times 100 \right)cm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ As,\ 1m=100cm \right] \\
& \Rightarrow l=21.98cm \\
\end{align}$
Hence the required length of the arc = 21.98cm.
Now, we have to calculate area of the sector;
We know, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Putting all the values in SI unit;
$\begin{align}
& Area=\dfrac{1}{2}\times \dfrac{\pi }{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =\dfrac{1}{2}\times \dfrac{3.14}{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =0.023079{{m}^{2}} \\
\end{align}$
We know $1{{m}^{2}}={{10}^{4}}c{{m}^{2}}$
$\begin{align}
& \Rightarrow Area=\left( 0.023079\times {{10}^{4}} \right)c{{m}^{2}} \\
& \Rightarrow Area=230.79c{{m}^{2}} \\
\end{align}$
Hence, the required area of the sector $=230.79c{{m}^{2}}$.
Note: In the formulas of length of the arc and area of the sector, use all the quantities in SI unit. Don’t forget to convert angle into radian. SI unit of angle is radian.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

