
In a circle of radius 21cm, an arc subtends an angle of $60{}^\circ $at the centre. Find
(i) The length of the arc
(ii) Area of sector.
Answer
508.8k+ views
- Hint: Use the formula $\theta =\dfrac{l}{r}$ where $\theta $ = angle subtended by arc, l = length of the arc and r = radius of the circle. For calculating the length of the arc as ‘$\theta $’ and ‘r’ are given in question.
For finding the area of the sector use formula, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Complete step-by-step solution -
According to question, radius of the circle = 21 cm and angle subtended by arc = $60{}^\circ $.
We know, $\theta =\dfrac{l}{r}$.
First we will need to change ‘$\theta $’ and ‘r’ in their SI unit. SI unit of radius is meter and angle is radian.
As, 1m = 100cm and \[1{}^\circ =\dfrac{\pi }{180}radian,\]
\[\begin{align}
& radius=21cm=\dfrac{21}{100}=0.21m \\
& Angle\ subtended=60{}^\circ =\left( 60\times \dfrac{\pi }{180} \right)radian=\dfrac{\pi }{3} \\
\end{align}\]
Now, putting these values in the formula,
$\begin{align}
& \theta =\dfrac{l}{r} \\
& \dfrac{\pi }{3}=\dfrac{l}{0.21} \\
\end{align}$
Multiplying both sides by 0.21, we will get,
$\begin{align}
& \dfrac{\pi }{3}\times 0.21=\dfrac{l}{0.21}\times 0.21 \\
& \Rightarrow \pi \times 0.07=l \\
\end{align}$
Using $\pi =3.14$, we will get,
$\begin{align}
& \Rightarrow l=\left( 3.14\times 0.07 \right)m \\
& \Rightarrow l=0.2198m \\
& \Rightarrow l=\left( 0.2198\times 100 \right)cm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ As,\ 1m=100cm \right] \\
& \Rightarrow l=21.98cm \\
\end{align}$
Hence the required length of the arc = 21.98cm.
Now, we have to calculate area of the sector;
We know, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Putting all the values in SI unit;
$\begin{align}
& Area=\dfrac{1}{2}\times \dfrac{\pi }{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =\dfrac{1}{2}\times \dfrac{3.14}{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =0.023079{{m}^{2}} \\
\end{align}$
We know $1{{m}^{2}}={{10}^{4}}c{{m}^{2}}$
$\begin{align}
& \Rightarrow Area=\left( 0.023079\times {{10}^{4}} \right)c{{m}^{2}} \\
& \Rightarrow Area=230.79c{{m}^{2}} \\
\end{align}$
Hence, the required area of the sector $=230.79c{{m}^{2}}$.
Note: In the formulas of length of the arc and area of the sector, use all the quantities in SI unit. Don’t forget to convert angle into radian. SI unit of angle is radian.
For finding the area of the sector use formula, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Complete step-by-step solution -

According to question, radius of the circle = 21 cm and angle subtended by arc = $60{}^\circ $.
We know, $\theta =\dfrac{l}{r}$.
First we will need to change ‘$\theta $’ and ‘r’ in their SI unit. SI unit of radius is meter and angle is radian.
As, 1m = 100cm and \[1{}^\circ =\dfrac{\pi }{180}radian,\]
\[\begin{align}
& radius=21cm=\dfrac{21}{100}=0.21m \\
& Angle\ subtended=60{}^\circ =\left( 60\times \dfrac{\pi }{180} \right)radian=\dfrac{\pi }{3} \\
\end{align}\]
Now, putting these values in the formula,
$\begin{align}
& \theta =\dfrac{l}{r} \\
& \dfrac{\pi }{3}=\dfrac{l}{0.21} \\
\end{align}$
Multiplying both sides by 0.21, we will get,
$\begin{align}
& \dfrac{\pi }{3}\times 0.21=\dfrac{l}{0.21}\times 0.21 \\
& \Rightarrow \pi \times 0.07=l \\
\end{align}$
Using $\pi =3.14$, we will get,
$\begin{align}
& \Rightarrow l=\left( 3.14\times 0.07 \right)m \\
& \Rightarrow l=0.2198m \\
& \Rightarrow l=\left( 0.2198\times 100 \right)cm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left[ As,\ 1m=100cm \right] \\
& \Rightarrow l=21.98cm \\
\end{align}$
Hence the required length of the arc = 21.98cm.
Now, we have to calculate area of the sector;
We know, Area of the sector $=\dfrac{1}{2}\times \theta \times {{r}^{2}}$.
Putting all the values in SI unit;
$\begin{align}
& Area=\dfrac{1}{2}\times \dfrac{\pi }{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =\dfrac{1}{2}\times \dfrac{3.14}{3}\times \left( 0.21 \right)\times \left( 0.21 \right) \\
& =0.023079{{m}^{2}} \\
\end{align}$
We know $1{{m}^{2}}={{10}^{4}}c{{m}^{2}}$
$\begin{align}
& \Rightarrow Area=\left( 0.023079\times {{10}^{4}} \right)c{{m}^{2}} \\
& \Rightarrow Area=230.79c{{m}^{2}} \\
\end{align}$
Hence, the required area of the sector $=230.79c{{m}^{2}}$.
Note: In the formulas of length of the arc and area of the sector, use all the quantities in SI unit. Don’t forget to convert angle into radian. SI unit of angle is radian.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
