
In a circle of 5 feet radius, what is the length of the arc which subtends an angle of ${{33}^{\text{o}}}15'$ at the centre?
Answer
593.7k+ views
Hint: We will apply the formula to find the length of an arc. The formula is given by $L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R$, where R is the radius of the circle and $\theta $ is the angle that is measured for the arc of the circle.
Complete step-by-step answer:
The required diagram for the question is shown below.
Now, first we consider the angle which is given to us as ${{33}^{\text{o}}}15'$. Here, we will apply the formula to convert minutes into degrees as ${{\left( 1 \right)}^{\text{o}}}=60'$ or 1 minute is divided into 1 by 60 degrees. Numerically, this is represented as $\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}}$. As we can write ${{33}^{\text{o}}}15'$ as ${{33}^{\text{o}}}15'={{33}^{\text{o}}}+15'$. Therefore, after substituting the $\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}}$ in ${{33}^{\text{o}}}15'={{33}^{\text{o}}}+15'$ we will have,
$\begin{align}
& {{33}^{\text{o}}}15'={{33}^{\text{o}}}+15' \\
& \Rightarrow {{33}^{\text{o}}}15'={{33}^{\text{o}}}+{{\left( 15\times \dfrac{1}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( 33+\dfrac{15}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1980+15}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1995}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{133}{4} \right)}^{\text{o}}} \\
\end{align}$
Now, we have degree of the circle as $\theta ={{\left( \dfrac{133}{4} \right)}^{\text{o}}}$ and we are already given the value of radius of the circle as R = 5 feet. Therefore, we can now apply the formula to find the length of an arc. The formula is given by $L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R$, where R is the radius of the circle and $\theta $ is the angle that is measured for the arc of the circle.
Therefore, the length of the arc is given by,
$\begin{align}
& L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R \\
& \Rightarrow L=\dfrac{{{\left( \dfrac{133}{4} \right)}^{\text{o}}}}{{{360}^{\text{o}}}}\times 2\pi 5 \\
& \Rightarrow L=\dfrac{{{\left( 133 \right)}^{\text{o}}}}{{{360}^{\text{o}}}\times {{4}^{\text{o}}}}\times 2\pi 5 \\
& \Rightarrow L=\dfrac{133}{72\times 2}\times \pi \\
& \Rightarrow L=\dfrac{133}{144}\times \pi \\
& \Rightarrow L=\dfrac{133}{144}\pi \\
\end{align}$
After this we will substitute $\pi =\dfrac{22}{7}$ in $L=\dfrac{133}{144}\pi $. Therefore, we get
$\begin{align}
& L=\dfrac{133}{144}\pi \\
& \Rightarrow L=\dfrac{133}{144}\times \dfrac{22}{7} \\
& \Rightarrow L=\dfrac{19}{72}\times \dfrac{11}{1} \\
& \Rightarrow L=\dfrac{209}{72} \\
\end{align}$
Hence, the length of the arc of the circle is given by $L=\dfrac{209}{72}$.
Note: If we don’t want our answer in fraction then we will not stop with $L=\dfrac{209}{72}$. We will convert it into decimals after dividing the numerator by denominator. Thus, we get $L=2.90$ which is an approximate value. We could have also substituted $\pi =3.14$ instead of $\pi =\dfrac{22}{7}$ in $L=\dfrac{133}{144}\pi $. Therefore, we get
$\begin{align}
& L=\dfrac{133}{144}\pi \\
& \Rightarrow L=\dfrac{133}{144}\times 3.14 \\
& \Rightarrow L=0.92\times 3.14 \\
& \Rightarrow L=2.8888 \\
\end{align}$
Complete step-by-step answer:
The required diagram for the question is shown below.
Now, first we consider the angle which is given to us as ${{33}^{\text{o}}}15'$. Here, we will apply the formula to convert minutes into degrees as ${{\left( 1 \right)}^{\text{o}}}=60'$ or 1 minute is divided into 1 by 60 degrees. Numerically, this is represented as $\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}}$. As we can write ${{33}^{\text{o}}}15'$ as ${{33}^{\text{o}}}15'={{33}^{\text{o}}}+15'$. Therefore, after substituting the $\left( 1 \right)'={{\left( \dfrac{1}{60} \right)}^{\text{o}}}$ in ${{33}^{\text{o}}}15'={{33}^{\text{o}}}+15'$ we will have,
$\begin{align}
& {{33}^{\text{o}}}15'={{33}^{\text{o}}}+15' \\
& \Rightarrow {{33}^{\text{o}}}15'={{33}^{\text{o}}}+{{\left( 15\times \dfrac{1}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( 33+\dfrac{15}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1980+15}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{1995}{60} \right)}^{\text{o}}} \\
& \Rightarrow {{33}^{\text{o}}}15'={{\left( \dfrac{133}{4} \right)}^{\text{o}}} \\
\end{align}$
Now, we have degree of the circle as $\theta ={{\left( \dfrac{133}{4} \right)}^{\text{o}}}$ and we are already given the value of radius of the circle as R = 5 feet. Therefore, we can now apply the formula to find the length of an arc. The formula is given by $L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R$, where R is the radius of the circle and $\theta $ is the angle that is measured for the arc of the circle.
Therefore, the length of the arc is given by,
$\begin{align}
& L=\dfrac{\theta }{{{360}^{\text{o}}}}\times 2\pi R \\
& \Rightarrow L=\dfrac{{{\left( \dfrac{133}{4} \right)}^{\text{o}}}}{{{360}^{\text{o}}}}\times 2\pi 5 \\
& \Rightarrow L=\dfrac{{{\left( 133 \right)}^{\text{o}}}}{{{360}^{\text{o}}}\times {{4}^{\text{o}}}}\times 2\pi 5 \\
& \Rightarrow L=\dfrac{133}{72\times 2}\times \pi \\
& \Rightarrow L=\dfrac{133}{144}\times \pi \\
& \Rightarrow L=\dfrac{133}{144}\pi \\
\end{align}$
After this we will substitute $\pi =\dfrac{22}{7}$ in $L=\dfrac{133}{144}\pi $. Therefore, we get
$\begin{align}
& L=\dfrac{133}{144}\pi \\
& \Rightarrow L=\dfrac{133}{144}\times \dfrac{22}{7} \\
& \Rightarrow L=\dfrac{19}{72}\times \dfrac{11}{1} \\
& \Rightarrow L=\dfrac{209}{72} \\
\end{align}$
Hence, the length of the arc of the circle is given by $L=\dfrac{209}{72}$.
Note: If we don’t want our answer in fraction then we will not stop with $L=\dfrac{209}{72}$. We will convert it into decimals after dividing the numerator by denominator. Thus, we get $L=2.90$ which is an approximate value. We could have also substituted $\pi =3.14$ instead of $\pi =\dfrac{22}{7}$ in $L=\dfrac{133}{144}\pi $. Therefore, we get
$\begin{align}
& L=\dfrac{133}{144}\pi \\
& \Rightarrow L=\dfrac{133}{144}\times 3.14 \\
& \Rightarrow L=0.92\times 3.14 \\
& \Rightarrow L=2.8888 \\
\end{align}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

