How do you implicitly differentiate $1-xy=x-y$?
Answer
Verified
438.3k+ views
Hint: To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable. Hence, differentiate both the sides with respect to x. You may also have to use the product rule of differentiation.
Complete step-by-step solution:
Let us first understand what is meant by implicit equations.
In simple terms, an implicit equation is an equation that has more than one variable and not in the form $y=f(x)$ where f is some function of x.
To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable.
Here, the given equation is $1-xy=x-y$ …. (i).
Let us assume that the independent variable of the equation is x and the variable y is the dependent variable and depends on x.
Therefore, let us differentiate equation (i) with respect to x.
Then,
$\Rightarrow \dfrac{d}{dx}\left( 1-xy \right)=\dfrac{d}{dx}\left( x-y \right)$
Using the associative property of differentiation we can write the above equation as
$\Rightarrow \dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( xy \right)=\dfrac{d}{dx}\left( x \right)-\dfrac{d}{dx}\left( y \right)$ …. (ii)
Differentiation of a constant is always equal to zero.
Therefore, $\dfrac{d}{dx}\left( 1 \right)=0$
And $\dfrac{d}{dx}\left( x \right)$
The derivative $\dfrac{d}{dx}\left( xy \right)$ can be simplified using product rule.
According to the product rule of differentiation, $\dfrac{d}{dx}(xy)=\dfrac{d}{dx}(x).y+x.\dfrac{d}{dx}(y)$
This further implies that $\dfrac{d}{dx}(xy)=(1)y+x\dfrac{dy}{dx}$
Which means that $\dfrac{d}{dx}(xy)=y+x\dfrac{dy}{dx}$
Now, substitute all the given values in equation (ii).
$\Rightarrow 0-\left( y+x\dfrac{dy}{dx} \right)=1-\dfrac{dy}{dx}$
Then,
$\Rightarrow \dfrac{dy}{dx}-x\dfrac{dy}{dx}=1+y$
$\Rightarrow (1-x)\dfrac{dy}{dx}=1+y$
This means that $\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$ …. (iii)
Hence, we calculated the derivative of y with respect to x by differentiating implicitly.
Note: When we have an equation in the form $y=f(x)$ where f is some function of x, this equation is called an explicit function. In this, we find the derivative by just differentiating the right hand side of the equation (i.e. f(x)). Sometimes, the question may demand to find the derivative in the term of x only. Then you can substitute the value of y in equation (iii) from the first equation given in the question.
Complete step-by-step solution:
Let us first understand what is meant by implicit equations.
In simple terms, an implicit equation is an equation that has more than one variable and not in the form $y=f(x)$ where f is some function of x.
To differentiate an implicit equation with respect to one of the variables, we differentiate both the sides of the equation with respect to that variable.
Here, the given equation is $1-xy=x-y$ …. (i).
Let us assume that the independent variable of the equation is x and the variable y is the dependent variable and depends on x.
Therefore, let us differentiate equation (i) with respect to x.
Then,
$\Rightarrow \dfrac{d}{dx}\left( 1-xy \right)=\dfrac{d}{dx}\left( x-y \right)$
Using the associative property of differentiation we can write the above equation as
$\Rightarrow \dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( xy \right)=\dfrac{d}{dx}\left( x \right)-\dfrac{d}{dx}\left( y \right)$ …. (ii)
Differentiation of a constant is always equal to zero.
Therefore, $\dfrac{d}{dx}\left( 1 \right)=0$
And $\dfrac{d}{dx}\left( x \right)$
The derivative $\dfrac{d}{dx}\left( xy \right)$ can be simplified using product rule.
According to the product rule of differentiation, $\dfrac{d}{dx}(xy)=\dfrac{d}{dx}(x).y+x.\dfrac{d}{dx}(y)$
This further implies that $\dfrac{d}{dx}(xy)=(1)y+x\dfrac{dy}{dx}$
Which means that $\dfrac{d}{dx}(xy)=y+x\dfrac{dy}{dx}$
Now, substitute all the given values in equation (ii).
$\Rightarrow 0-\left( y+x\dfrac{dy}{dx} \right)=1-\dfrac{dy}{dx}$
Then,
$\Rightarrow \dfrac{dy}{dx}-x\dfrac{dy}{dx}=1+y$
$\Rightarrow (1-x)\dfrac{dy}{dx}=1+y$
This means that $\dfrac{dy}{dx}=\dfrac{1+y}{1-x}$ …. (iii)
Hence, we calculated the derivative of y with respect to x by differentiating implicitly.
Note: When we have an equation in the form $y=f(x)$ where f is some function of x, this equation is called an explicit function. In this, we find the derivative by just differentiating the right hand side of the equation (i.e. f(x)). Sometimes, the question may demand to find the derivative in the term of x only. Then you can substitute the value of y in equation (iii) from the first equation given in the question.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE