
If\[P{\text{ }} = {\text{ }}\left( {1,{\text{ }}1} \right),{\text{ }}Q{\text{ }} = {\text{ }}(3,{\text{ }}2)\] and $ R $ is a point on \[x{\text{ }} - {\text{ }}axis\] then the value of \[PR{\text{ }} + {\text{ }}RQ\]will be minimum at
\[1)\] \[\left( {\dfrac{5}{3},{\text{ }}0} \right)\]
\[2)\] \[\left( {\dfrac{1}{3},{\text{ }}0} \right)\]
\[3)\] \[\left( {3,{\text{ }}0} \right)\]
\[4)\] \[\left( {1,{\text{ }}0} \right)\]
Answer
439.5k+ views
Hint: We need to find the point $ R $ such that \[PR{\text{ }} + {\text{ }}RQ\] has the minimum value . We solve this by using the concept of coordinate system and applications of derivatives . Firstly we equate a relation in terms of a variable $ x $ by using the distance formula then by using the concept of increasing and decreasing functions and computing it to zero we find the point $ R $ .
Complete step-by-step answer:
Given :
Let point $ R $ be \[\left( {x{\text{ }},{\text{ }}0} \right)\][ as the point $ R $ lies on \[x - axis\]the value of y - coordinate is zero ]
Point \[P{\text{ }} = {\text{ }}\left( {1{\text{ }},{\text{ }}1} \right)\]and point \[Q{\text{ }} = {\text{ }}\left( {3{\text{ }},{\text{ }}2} \right)\]
Now , using distance formula we get the value of $ PR $ and $ RQ $
We know ,
Distance formula $ = \sqrt {[{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}]} $
Using distance formula ,
$ PR = \sqrt {[{{(x - 1)}^2} + {{(0 - 1)}^2}]} $
$ PR = \sqrt {[{{(x - 1)}^2} + 1]} $
Expanding the term , using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
$ PR = \sqrt {[{x^2} + 1 - 2x + 1]} $
$ PR = \sqrt {[{x^2} - 2x + 2]} $
Similarly , using distance formula we find \[RQ\]
$ RQ = \sqrt {[{{(3 - x)}^2} + {{(2 - 0)}^2}]} $
$ RQ = \sqrt {[{{(3 - x)}^2} + 4]} $
Expanding the term , using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
$ RQ = \sqrt {[{x^2} + 9 - 6x + 4]} $
$ RQ = \sqrt {[{x^2} - 6x + 13]} $
Let \[y{\text{ }} = {\text{ }}PR{\text{ }} + {\text{ }}RQ\]
$ y = \sqrt {[{x^2} - 2x + 2]} + \sqrt {[{x^2} - 6x + 13]} $
For minimum value , we differentiate\[\;y\] with respect to
$ \dfrac{{dy}}{{dx}} = \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] $
Put , \[\dfrac{{dy}}{{dx}}{\text{ }} = {\text{ }}0\]
$ \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] = 0 $
On simplifying , we get
$ \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] = \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] $
Cancelling the terms and squaring both sides , we get
$ \dfrac{{{{(x - 1)}^2}}}{{[{x^2} - 2x + 2]}} = \dfrac{{{{(x - 3)}^2}}}{{[{x^2} - 6x + 13]}} $
Cross multiplying terms , we get
$ {(x - 1)^2} \times [{x^2} - 6x + 13] = {(x - 3)^2} \times [{x^2} - 2x + 2] $
Expanding the terms using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ , we get
$ [{x^2} - 2x + 1] \times [{x^2} - 6x + 13] = [{x^2} - 6x + 9] \times [{x^2} - 2x + 2] $
Expanding the terms , we get
\[{x^4} - 2{x^3} + {x^2} - 6{x^3} + 12{x^2} - 6x + 13{x^2} - 26x + 13 = {x^4} - 6{x^3} + 9{x^2} - 2{x^3} + 12{x^2} - 18x + 2{x^2} - 12x + 18\]
After further simplifying the terms and after cancelling the terms , we get
$ 3{x^2} - 2x - 5 = 0 $
Using splitting of roots ,
\[3{x^2} - 5x + 3x - 5 = 0\]
The roots of the equation becomes as
\[\left( {3x - 5} \right) \times \left( {x + 1} \right) = 0\]
So,
\[x = \dfrac{5}{3}\] or \[x = - 1\]
Hence , the value of point $ R $ is \[\left( {\dfrac{5}{3},0} \right)\]
Thus , the correct option is \[\left( 1 \right)\]
So, the correct answer is “Option 1”.
Note: We get two values of $ x $ . Neglecting \[x = - 1\]is a negative value for $ \dfrac{{dy}}{{dx}} $ which makes the values of \[PR + RQ\]maximum . But in the question we had to find the value of point R for which\[PR + RQ\] was minimum , which is satisfied by \[\left( {\dfrac{5}{3},0} \right)\] as it gives a positive value for $ \dfrac{{dy}}{{dx}} $ .
If the value of the double derivative of a function is negative at a point then it is the point of minima and vice versa .
Complete step-by-step answer:
Given :
Let point $ R $ be \[\left( {x{\text{ }},{\text{ }}0} \right)\][ as the point $ R $ lies on \[x - axis\]the value of y - coordinate is zero ]
Point \[P{\text{ }} = {\text{ }}\left( {1{\text{ }},{\text{ }}1} \right)\]and point \[Q{\text{ }} = {\text{ }}\left( {3{\text{ }},{\text{ }}2} \right)\]
Now , using distance formula we get the value of $ PR $ and $ RQ $
We know ,
Distance formula $ = \sqrt {[{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}]} $
Using distance formula ,
$ PR = \sqrt {[{{(x - 1)}^2} + {{(0 - 1)}^2}]} $
$ PR = \sqrt {[{{(x - 1)}^2} + 1]} $
Expanding the term , using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
$ PR = \sqrt {[{x^2} + 1 - 2x + 1]} $
$ PR = \sqrt {[{x^2} - 2x + 2]} $
Similarly , using distance formula we find \[RQ\]
$ RQ = \sqrt {[{{(3 - x)}^2} + {{(2 - 0)}^2}]} $
$ RQ = \sqrt {[{{(3 - x)}^2} + 4]} $
Expanding the term , using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $
$ RQ = \sqrt {[{x^2} + 9 - 6x + 4]} $
$ RQ = \sqrt {[{x^2} - 6x + 13]} $
Let \[y{\text{ }} = {\text{ }}PR{\text{ }} + {\text{ }}RQ\]
$ y = \sqrt {[{x^2} - 2x + 2]} + \sqrt {[{x^2} - 6x + 13]} $
For minimum value , we differentiate\[\;y\] with respect to
$ \dfrac{{dy}}{{dx}} = \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] $
Put , \[\dfrac{{dy}}{{dx}}{\text{ }} = {\text{ }}0\]
$ \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] = 0 $
On simplifying , we get
$ \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] = \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] $
Cancelling the terms and squaring both sides , we get
$ \dfrac{{{{(x - 1)}^2}}}{{[{x^2} - 2x + 2]}} = \dfrac{{{{(x - 3)}^2}}}{{[{x^2} - 6x + 13]}} $
Cross multiplying terms , we get
$ {(x - 1)^2} \times [{x^2} - 6x + 13] = {(x - 3)^2} \times [{x^2} - 2x + 2] $
Expanding the terms using $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ , we get
$ [{x^2} - 2x + 1] \times [{x^2} - 6x + 13] = [{x^2} - 6x + 9] \times [{x^2} - 2x + 2] $
Expanding the terms , we get
\[{x^4} - 2{x^3} + {x^2} - 6{x^3} + 12{x^2} - 6x + 13{x^2} - 26x + 13 = {x^4} - 6{x^3} + 9{x^2} - 2{x^3} + 12{x^2} - 18x + 2{x^2} - 12x + 18\]
After further simplifying the terms and after cancelling the terms , we get
$ 3{x^2} - 2x - 5 = 0 $
Using splitting of roots ,
\[3{x^2} - 5x + 3x - 5 = 0\]
The roots of the equation becomes as
\[\left( {3x - 5} \right) \times \left( {x + 1} \right) = 0\]
So,
\[x = \dfrac{5}{3}\] or \[x = - 1\]
Hence , the value of point $ R $ is \[\left( {\dfrac{5}{3},0} \right)\]
Thus , the correct option is \[\left( 1 \right)\]
So, the correct answer is “Option 1”.
Note: We get two values of $ x $ . Neglecting \[x = - 1\]is a negative value for $ \dfrac{{dy}}{{dx}} $ which makes the values of \[PR + RQ\]maximum . But in the question we had to find the value of point R for which\[PR + RQ\] was minimum , which is satisfied by \[\left( {\dfrac{5}{3},0} \right)\] as it gives a positive value for $ \dfrac{{dy}}{{dx}} $ .
If the value of the double derivative of a function is negative at a point then it is the point of minima and vice versa .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
