
If\[\left| {A \times B} \right| = \sqrt 3 A \cdot B\], then the value of \[\left| {A \times B} \right|\]is:
A. \[{\left( {{A^2} + {B^2} + AB} \right)^{\dfrac{1}{2}}}\]
B. \[{\left( {{A^2} + {B^2} + \dfrac{{AB}}{{\sqrt 3 }}} \right)^{\dfrac{1}{2}}}\]
C. A +B
D. \[{\left( {{A^2} + {B^2} + \sqrt 3 AB} \right)^{\dfrac{1}{2}}}\]
Answer
585.6k+ views
Hint:
a. You should know vector calculus.
b. You should know vector identities.
c. You should know cosine values for \[0,30,{\text{ }}45,{\text{ }}60,{\text{ }}and{\text{ }}90\].
Complete step by step solution:
We know that, by vector product,
\[\left( {A \times B} \right) = AB\sin \theta \hat n\] - - - - - - - - - - - - - - - - - - - - (1)
And by Scalar product,
\[\left( {A \cdot B} \right) = AB\cos \theta \]- - - - - - - - - - - - - - - - - - - - - - (2)
In question, the given quantities are
\[\left| {A \times B} \right| = \sqrt 3 A \cdot B\]- - - - - - - - - - - - - - - - - - - - - - -(3)
By using
\[\left| {A \times B} \right| = \left| A \right|\left| B \right|\sin \theta \] - - - - - - - - - - - - - - - - - - - - - (4)
We get,
\[\left| {A \times B} \right| = AB\sin \theta \] - - - - - - - - - - - - - - - - - - - - - - - (5)
Now,
\[\left| {A \cdot B} \right| = \left| A \right|\left| B \right|\cos \theta \]
\[A \cdot B = AB\cos \theta \] - - - - - - - - - - - - - - - - - - - - - - - - - (6)
Substitute equation (6) in the right side of the equation (3) and equation (5) in the left side of the equation (3).
So,
\[AB\sin \theta = \sqrt 3 AB\cos \theta \]
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \sqrt 3 \]
\[\tan \theta \]\[ = \] \[\sqrt 3 \]
\[ \Rightarrow \theta = 60^\circ \]
Now,
\[{(A + B)^2} = {A^2} + {B^2} + 2A.B\]
\[{(A + B)^2} = {A^2} + {B^2} + 2AB\cos \theta \]
\[{(A + B)^2} = {A^2} + {B^2} + 2AB \cdot \dfrac{1}{2}\]
\[{(A + B)^2} = {A^2} + {B^2} + AB\]
Or,
\[A + B = {\left( {{A^2} + {B^2} + AB} \right)^{\dfrac{1}{2}}}\]
Hence, Option (A) is correct
Note:
a. Substitution should not be reversed. If it reverses, all calculation will be wasted and time too.
b. Should be aware of the values of cos, sin and tan for \[0,{\text{ }}30,{\text{ }}45,{\text{ }}60,{\text{ }}and{\text{ }}90.\]
c. After getting the final calculation check the options and conveniently rearrange the solution.
a. You should know vector calculus.
b. You should know vector identities.
c. You should know cosine values for \[0,30,{\text{ }}45,{\text{ }}60,{\text{ }}and{\text{ }}90\].
Complete step by step solution:
We know that, by vector product,
\[\left( {A \times B} \right) = AB\sin \theta \hat n\] - - - - - - - - - - - - - - - - - - - - (1)
And by Scalar product,
\[\left( {A \cdot B} \right) = AB\cos \theta \]- - - - - - - - - - - - - - - - - - - - - - (2)
In question, the given quantities are
\[\left| {A \times B} \right| = \sqrt 3 A \cdot B\]- - - - - - - - - - - - - - - - - - - - - - -(3)
By using
\[\left| {A \times B} \right| = \left| A \right|\left| B \right|\sin \theta \] - - - - - - - - - - - - - - - - - - - - - (4)
We get,
\[\left| {A \times B} \right| = AB\sin \theta \] - - - - - - - - - - - - - - - - - - - - - - - (5)
Now,
\[\left| {A \cdot B} \right| = \left| A \right|\left| B \right|\cos \theta \]
\[A \cdot B = AB\cos \theta \] - - - - - - - - - - - - - - - - - - - - - - - - - (6)
Substitute equation (6) in the right side of the equation (3) and equation (5) in the left side of the equation (3).
So,
\[AB\sin \theta = \sqrt 3 AB\cos \theta \]
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \sqrt 3 \]
\[\tan \theta \]\[ = \] \[\sqrt 3 \]
\[ \Rightarrow \theta = 60^\circ \]
Now,
\[{(A + B)^2} = {A^2} + {B^2} + 2A.B\]
\[{(A + B)^2} = {A^2} + {B^2} + 2AB\cos \theta \]
\[{(A + B)^2} = {A^2} + {B^2} + 2AB \cdot \dfrac{1}{2}\]
\[{(A + B)^2} = {A^2} + {B^2} + AB\]
Or,
\[A + B = {\left( {{A^2} + {B^2} + AB} \right)^{\dfrac{1}{2}}}\]
Hence, Option (A) is correct
Note:
a. Substitution should not be reversed. If it reverses, all calculation will be wasted and time too.
b. Should be aware of the values of cos, sin and tan for \[0,{\text{ }}30,{\text{ }}45,{\text{ }}60,{\text{ }}and{\text{ }}90.\]
c. After getting the final calculation check the options and conveniently rearrange the solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

