
If\[f(x)=\ln (\ln x)\], then find the value of \[{{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}\]
Answer
600k+ views
Hint: Assume a $f(x)=y$ to avoid confusion. Then differentiate using the rules of differentiation.
Complete step by step answer:
The given expression is
\[f(x)=\ln (\ln x)\]
Let $f(x)=y$ , then the above expression can be written as,
$y=\ln (\ln x)$
Now we will find the first order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}(\ln (\ln x))$
Now we know, $\left( \ln u \right)'=\dfrac{1}{\ln u}(u)'$ , applying this formula, the above equation can be written as,
$\dfrac{dy}{dx}=\dfrac{1}{\ln x}\dfrac{d}{dx}\left( \ln x \right)$
Again applying the formula, $\left( \ln u \right)'=\dfrac{1}{\ln u}(u)'$, we get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln x}\times \dfrac{1}{x}............(i) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{-1}}}{\ln x} \\
\end{align}$
Now we will find the second order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{-1}}}{\ln x} \right)$
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\ln x\dfrac{d}{dx}\left( {{x}^{-1}} \right)-{{x}^{-1}}\dfrac{d}{dx}\left( \ln x \right)}{{{\left( \ln x \right)}^{2}}} \right)$
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\ln x(-1){{x}^{-1-1}}-{{x}^{-1}}\dfrac{1}{x}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-\dfrac{\ln x}{{{x}^{2}}}-\dfrac{1}{{{x}^{2}}}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-\dfrac{\ln x+1}{{{x}^{2}}}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \dfrac{\ln x+1}{{{\left( x\ln x \right)}^{2}}} \right).........(ii) \\
\end{align}$
Substituting value from equation (i), we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \ln x+1 \right)\dfrac{dy}{dx}$
Now we will find the third order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=-\dfrac{d}{dx}\left( \left( \ln x+1 \right)\dfrac{dy}{dx} \right)$
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)+\left( \dfrac{dy}{dx} \right)\dfrac{d}{dx}\left( \ln x+1 \right) \right]$
Solving this using the above mentioned formulas, we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)+\left( \dfrac{dy}{dx} \right)\left( \dfrac{1}{x} \right) \right]$
Now substituting back the values from equation (i) and (ii), we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( -\left( \dfrac{\ln x+1}{{{\left( x\ln x \right)}^{2}}} \right) \right)+\left( \dfrac{1}{x\ln x} \right)\left( \dfrac{1}{x} \right) \right]$
Now opening the brackets, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ -\left( \dfrac{{{\left( \ln x+1 \right)}^{2}}}{{{\left( x\ln x \right)}^{2}}} \right)+\left( \dfrac{1}{{{x}^{2}}\ln x} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}={{\left( \dfrac{\ln x+1}{x\ln x} \right)}^{2}}-\dfrac{1}{{{x}^{2}}\ln x} \\
\end{align}$
Now we will substitute $'x=e'$, in the above expression, we get
$\Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{\ln (e)+1}{e\ln (e)} \right)}^{2}}-\dfrac{1}{{{e}^{2}}\ln (e)}$
We know $\ln e=1$, substituting this value, we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{1+1}{e(1)} \right)}^{2}}-\dfrac{1}{{{e}^{2}}(1)} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{2}{e} \right)}^{2}}-\dfrac{1}{{{e}^{2}}} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}=\dfrac{4-1}{{{e}^{2}}} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}=\dfrac{3}{{{e}^{2}}} \\
\end{align}\]
Note: Another way of solving is to find the value of each degree of derivative. Then this can be substitute in the equation $\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)+\left( \dfrac{dy}{dx} \right)\left( \dfrac{1}{x} \right) \right]$.
Complete step by step answer:
The given expression is
\[f(x)=\ln (\ln x)\]
Let $f(x)=y$ , then the above expression can be written as,
$y=\ln (\ln x)$
Now we will find the first order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}(\ln (\ln x))$
Now we know, $\left( \ln u \right)'=\dfrac{1}{\ln u}(u)'$ , applying this formula, the above equation can be written as,
$\dfrac{dy}{dx}=\dfrac{1}{\ln x}\dfrac{d}{dx}\left( \ln x \right)$
Again applying the formula, $\left( \ln u \right)'=\dfrac{1}{\ln u}(u)'$, we get
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln x}\times \dfrac{1}{x}............(i) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{-1}}}{\ln x} \\
\end{align}$
Now we will find the second order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{-1}}}{\ln x} \right)$
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\ln x\dfrac{d}{dx}\left( {{x}^{-1}} \right)-{{x}^{-1}}\dfrac{d}{dx}\left( \ln x \right)}{{{\left( \ln x \right)}^{2}}} \right)$
Now we know $\dfrac{d}{dx}({{u}^{n}})=n{{u}^{n-1}}\dfrac{d}{dx}(u)$ , applying this formula, the above equation becomes,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\ln x(-1){{x}^{-1-1}}-{{x}^{-1}}\dfrac{1}{x}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-\dfrac{\ln x}{{{x}^{2}}}-\dfrac{1}{{{x}^{2}}}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{-\dfrac{\ln x+1}{{{x}^{2}}}}{{{\left( \ln x \right)}^{2}}} \right) \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \dfrac{\ln x+1}{{{\left( x\ln x \right)}^{2}}} \right).........(ii) \\
\end{align}$
Substituting value from equation (i), we get
$\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \ln x+1 \right)\dfrac{dy}{dx}$
Now we will find the third order derivative. So, differentiate the above expression with respect to $'x'$, we get
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=-\dfrac{d}{dx}\left( \left( \ln x+1 \right)\dfrac{dy}{dx} \right)$
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)+\left( \dfrac{dy}{dx} \right)\dfrac{d}{dx}\left( \ln x+1 \right) \right]$
Solving this using the above mentioned formulas, we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)+\left( \dfrac{dy}{dx} \right)\left( \dfrac{1}{x} \right) \right]$
Now substituting back the values from equation (i) and (ii), we get
$\Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( -\left( \dfrac{\ln x+1}{{{\left( x\ln x \right)}^{2}}} \right) \right)+\left( \dfrac{1}{x\ln x} \right)\left( \dfrac{1}{x} \right) \right]$
Now opening the brackets, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ -\left( \dfrac{{{\left( \ln x+1 \right)}^{2}}}{{{\left( x\ln x \right)}^{2}}} \right)+\left( \dfrac{1}{{{x}^{2}}\ln x} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{3}}y}{d{{x}^{3}}}={{\left( \dfrac{\ln x+1}{x\ln x} \right)}^{2}}-\dfrac{1}{{{x}^{2}}\ln x} \\
\end{align}$
Now we will substitute $'x=e'$, in the above expression, we get
$\Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{\ln (e)+1}{e\ln (e)} \right)}^{2}}-\dfrac{1}{{{e}^{2}}\ln (e)}$
We know $\ln e=1$, substituting this value, we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{1+1}{e(1)} \right)}^{2}}-\dfrac{1}{{{e}^{2}}(1)} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}={{\left( \dfrac{2}{e} \right)}^{2}}-\dfrac{1}{{{e}^{2}}} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}=\dfrac{4-1}{{{e}^{2}}} \\
& \Rightarrow {{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=e}}=\dfrac{3}{{{e}^{2}}} \\
\end{align}\]
Note: Another way of solving is to find the value of each degree of derivative. Then this can be substitute in the equation $\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\left[ \left( \ln x+1 \right)\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)+\left( \dfrac{dy}{dx} \right)\left( \dfrac{1}{x} \right) \right]$.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it


